HITACHI

INDOOR UNITS SYSTEM FREE SERIES & COMPLEMENTARY SYSTEMS

Service Manual

RCI - FSN4

RCIM - FSN4(E)

RCD - FSN3

RPC - FSN3(E)

RPI - FSN(3/4)(P)E(-f)

RPIM - FSN4E(-DU)

RPK - FSN(H)3M

RPF - FSN2E

RPFI - FSN2E

KPI - (E/X)4E

DX - Interface - EXV-E2

Econofresh - EF-456NE

Contents

Contents

General information	1
Unit installation	2
Piping work and refrigerant charge	3
Electrical and control settings	4
Control system	5
Optional functions	6
Commissioning	7
Electrical check of main parts	8
Servicing	9
Troubleshooting	10
Maintenance notes	11

General Index

1.	General information	
1.1	General information	2
	1.1.1 Introduction	2
1.2	Applied symbols	3
1.3	Product classification and line-up	4
	1.3.1 Classification of indoor unit models	
	1.3.2 Classification of KPI models	
	1.3.3 Classification of DX-Interface models	
	1.3.4 Classification of Econofresh models	4
	1.3.5 Product line-up: indoor units	
	1.3.6 Product line-up: KPI energy recovery unit	9
	1.3.7 Product line-up: DX-Interface	9
	1.3.8 Product line-up: Econofresh	9
	1.3.9 Accessory code list	10
	1.3.10 Multi-Kits	11
	1.3.11 Individual remote controls	12
	1.3.12 Receiver kit for combination with wireless remote control switch	12
	1.3.13 Centralised remote controls	13
	1.3.14 Building air conditioning controls	13
	1.3.15 Gateways for building management systems (BMS)	14
	1.3.16 Control support devices	14
	1.3.17 Control accessories	15
	1.3.18 Other devices compatible with HITACHI Air Conditioning systems	15
2.	Unit installation	17
2.1	RCI - 4-way cassette	19
	2.1.1 Accessories supplied with the unit	19
	2.1.2 Unit installation	20
	2.1.3 Air panel installation: P-N23NA2	22
	2.1.4 Accessories supplied with the air panel P-N23NA2	26
2.2	RCIM - 4-way cassette (compact)	27
	2.2.1 Accessories supplied with the unit	27
	2.2.2 Unit installation	28
	2.2.3 Accessories supplied with the air panel: P-AP56NAM	30
	2.2.4 Air panel installation	31
2.3	RCD - 2-way cassette	35
	2.3.1 Accessories supplied with the unit	35
	2.3.2 Unit installation	36
	2.3.3 Accessories supplied with the air panel: P-N23DWA / P-N46DWA	39

	2.3.4 Air panel installation	39
2.4	RPC - Ceiling	41
	2.4.1 Accessories supplied with the unit RPC-FSN3	41
	2.4.2 Unit installation	42
	2.4.3 Suspension bracket installation RPC-FSN3E	42
	2.4.4 Suspension for FSN3 units	43
	2.4.5 Indoor unit installation	45
2.5	RPI(M) - Ducted indoor unit (0.6-6.0)FSN4E(-DU)	48
	2.5.1 Accessories supplied with the unit	48
	2.5.2 Unit installation	48
	2.5.3 Air duct connection	50
	2.5.4 Maintenance of the suction air filter	51
2.6	RPI - Ducted indoor unit (8/10)FSN3E(-f)	53
	2.6.1 Accessories supplied with the unit	53
	2.6.2 Unit installation	53
	2.6.3 Air duct connection	55
	2.6.4 Maintenance of the suction air filter	55
2.7	RPI - Ducted indoor unit (16/20)FSN3PE(-f)	56
	2.7.1 Unit installation	56
2.8	RPK - FSN(H)3M Wall mounted	58
	2.8.1 Accessories supplied with the unit	58
	2.8.2 Unit installation	58
	2.8.3 Mounting bracket dimensions	62
2.9	RPF - Floor type, RPFI - Floor concealed type	64
	2.9.1 Accessories supplied with the unit	64
	2.9.2 Unit installation	64
	2.9.3 Change in the air outlet direction (RPFI units)	66
	2.9.4 RPF: Optional PC-ARFPE remote control location	66
2.10	KPI energy and KPI active unit	67
	2.10.1 Accessories supplied with the unit	67
	2.10.2 Unit installation	67
	2.10.3 Duct connection	70
2.11	Econofresh Kit	72
	2.11.1 Accessories supplied with the unit	72
	2.11.2 Unit installation	72
	2.11.3 Mounting the unit	73
	2.11.4 Example of installation	74
2.12	DX-Interface	75
	2.12.1 Accessories supplied with the unit	75
	2.12.2 Unit installation	75

	2.12.3 Mounting method	76
	2.12.4 Thermistor installation	77
2.13	Optional accessories	79
	2.13.1 Outdoor air inlet	79
	2.13.1.1 For RCI-FSN4 indoor units: OACI-160K2 and PD-75A	81
	2.13.2 Duct adapters	83
	2.13.2.1 For RCIM-FSN4(E) indoor units: PD-75C	83
	2.13.2.2 For RCD-FSN3 indoor units: PD-150D	83
	2.13.3 T-duct connection position	84
	2.13.3.1 For RCI-FSN4 indoor units: TKCI-160k	84
	2.13.3.2 Branch pipe (PDF-71C, PDF-160CI)	85
	2.13.4 Outlet air flow interlock	87
	2.13.4.1 For RCI-FSN4 indoor units: PI-160SL1	87
	2.13.5 Filter box	89
	2.13.5.1 For RCI-FSN4 indoor units: B-160H2	89
	2.13.5.2 For RCD-FSN3E indoor units: BD-90H and BD-160HD	90
	2.13.6 Anti-bacteria filter	
	2.13.6.1 For RCI-FSN4: F-160L-K	
	2.13.6.2 For RCD-FSN3E indoor units: F-90MD-K1 and F-160MD-K1 (Antibacterial long life air filter)	
	2.13.7 Deodorising filter	92
	2.13.7.1 For RCI-FSN4 indoor units: F-71L-D1 and F-160L-D1	92
3.	Piping work and refrigerant charge	95
3.1	Refrigerant pipe selection	96
	3.1.1 Refrigerant pipe selection	96
3.2	Copper pipes, sizes, connection and insulation	97
	3.2.1 Copper pipes and sizes	
	3.2.2 Pipe connection	
	3.2.3 Insulation of multikits and/or branches	
3.3	General instructions on the installation of refrigerant pipes	
	Copper refrigerant pipe	
3.4		
	3.4.1 Three principles on work with refrigerant pipes	
	3.4.2 Preparing and cutting copper refrigeration pipes	
	3.4.3 Bending copper pipes	
	3.4.4 Brazing copper refrigeration pipes	
	3.4.5 Flared connection mounting	
٥.		
3.5	Refrigerant and drain hose installation	
	3.5.1 RCI-(1.0-6.0)FSN4 - 4-way cassette	
	3.5.2 RCIM-(0.6-2.5)FSN4(E) - 4-way cassette (compact)	
	3.5.3 RCD-(0.8-6.0)FSN3 - 2-way cassette	
	3.5.4 RPC-(3.0-6.0)FSN3E - Ceiling type	110
	V SMGB0099 rev.0 - 12/2016	

	3.5.5 RPC-(1.5-6.0)FSN3E - Ceiling type	112
	3.5.6 RPI-(0.6-1.5)FSN4E - Ducted indoor unit	116
	3.5.7 RPI-(2.0-6.0)FSN4E - Ducted indoor unit	118
	3.5.8 RPI-(8.0/10.0)FSN3E-(f) - Ducted indoor unit	120
	3.5.9 RPI-(16.0/20.0)FSN3PE(-f) - Ducted indoor unit	121
	3.5.10 RPIM-(0.6-1.5)FSN4E(-DU) - Ducted indoor unit	123
	3.5.11 RPK-(0.6-4.0)FSN(H)3M - Wall type	125
	3.5.12 RPF(I)-(1.0-2.5)FSN2E - Floor type	128
3.6	Refrigerant charge	129
3.7	Precautions in the event of refrigerant leaks	129
	3.7.1 Maximum permissible concentration of hydrofluorocarbon (HFC)	129
	3.7.2 Calculation of the concentration of refrigerant	129
	3.7.3 Countermeasures in the event of refrigerant leaks	129
4.	Electrical and control settings	131
4.1	Unit electrical wiring and connection	132
	4.1.1 Wiring size	132
	4.1.2 Minimum requirements of the protection devices	133
	4.1.3 Transmission wiring between outdoor and indoor unit	134
	4.1.4 Electrical connection of RCI units	134
	4.1.5 Electrical connection of RCIM units	136
	4.1.6 Electrical connection of RCD units	138
	4.1.7 Electrical connection of RPC units	140
	4.1.8 Electrical connection of RPI units	141
	4.1.9 Electrical connection of RPIM units	145
	4.1.10 Electrical connection of RPK units	147
	4.1.11 Electrical connection of KPI units	152
	4.1.12 Econofresh electrical wiring connection	153
	4.1.13 DX-Interface electrical wiring	154
	4.1.14 Network system connection (CS-NET WEB)	157
	4.1.15 Connection between units H-LINK and H-LINK II	157
4.2	Setting of DIP switches and RSW switches	158
	4.2.1 Location of DIP switches and RSW switches	159
	4.2.2 Functions of the DIP switches and RSW switches (Indoor units)	161
	4.2.3 Functions of the DIP switches and RSW switches (KPI units)	164
	4.2.4 Functions of the DIP switches and RSW switches (Econofresh kit)	166
	4.2.5 Functions of the DIP switches and RSW switches (DX-Interface)	166
4.3	Wiring diagrams for indoor units and complementary systems	169
	4.3.1 Wiring diagrams for indoor units	169
	4.3.2 Wiring diagrams for complementary systems	182

5.	Control system	185
5.1	Printed circuit boards for RCI-FSN4 indoor units	186
	5.1.1 Printed circuit boards for RCI-(1.0-6.0)FSN4	186
5.2	Printed circuit boards for RCIM-FSN4(E) indoor units	187
5.3	Printed circuit boards for RCD-FSN3 indoor units	188
5.4	Printed circuit board for RPC-FSN3E, RPF(I), units	189
5.5	Printed circuit board for RPC-FSN3	190
5.6	Printed circuit board for RPI(M)-(0.6-6.0)FSN4E	191
5.7	Printed circuit board for RPI-(8.0-20.0)FSN3(P)E(-f) units	192
5.8	Printed circuit board for RPK-FSN(H)3M units	193
	5.8.1 For RPK-(0.6-1.5)FSN(H)3M	193
	5.8.2 For RPK-(2.0-4.0)FSN3M	
5.9	Printed circuit board for complementary systems	195
	5.9.1 Printed circuit board for KPI	195
	5.9.2 Printed circuit board for DX-Interface	196
5.10	Safety protection and control	197
5.11	Indoor electronic expansion valve control	198
6.	Optional functions	199
6.1	Indoor units input and output signals	200
	6.1.1 Available ports	200
	6.1.2 Optional signal configuration	202
	6.1.3 Programming with remote controller	204
	6.1.4 Description of optional input signals	204
	6.1.5 Description of optional output signals	208
6.2	Optional functions through Remote control	209
	6.2.1 List of optional remote control functions. (PC-ARFPE)	209
	6.2.2 Description of the optional remote control functions (PC-ARFPE)	217
	6.2.3 Optional functions for PC-ARH remote controls	
	6.2.4 Settings on wireless remote controls	226
6.3	Complementary systems	227
	6.3.1 KPI and DX-Interface	227
	6.3.1.1 DX-Interface	228
	6.3.2 Econofresh Kit	230
7.	Commissioning	233
7.1	Checks prior to the test run	234
	7.1.1 Check points	234
	7.1.2 Check procedure	234

	7.1.3 PC-ARFPE remote control	235
7.2	Test procedure using the wireless remote control	237
	7.2.1 PC-AWR wireless remote control	237
7.3	Test run check list	238
8.	Electrical check of main parts	239
8.1	Thermistor	240
8.2	Electronic expansion valve	240
8.3	Automatic louver mechanism	241
	8.3.1 RCI indoor units	241
	8.3.2 RCIM indoor units	242
	8.3.3 RCD indoor units	243
	8.3.4 RPC-FSN3E indoor units	244
9.	Servicing	245
9.1	RCI-(1.0-6.0)FSN4 - 4-way cassette	248
	9.1.1 Removing Air Filter and Air Inlet Grille	248
	9.1.2 Removing Electrical Box Cover	248
	9.1.3 Removing Optional Air Panel	249
	9.1.4 Removing turbo fan and fan motor	250
	9.1.5 Removing Printed Circuit Board (PCB1)	251
	9.1.6 Removing Drain Pan	252
	9.1.7 Removing Antibacterial Agent	252
	9.1.8 Removing Drain-Up Mechanism	253
	9.1.9 Removing Float Switch	254
	9.1.10 Removing Thermistors for Liquid Pipe and Gas Pipe	255
	9.1.11 Removing Electronic Expansion Valve Coil	256
	9.1.12 Removing Auto Louver Motors	257
	9.1.13 Removing Louver	258
9.2	RCIM-(0.6-2.5)FSN4(E) - 4-way cassette (compact)	259
	9.2.1 Removal of the air filter	259
	9.2.2 Removal of the air inlet grille	259
	9.2.3 Removal of the electrical box cover	259
	9.2.4 Removal of the optional air panel	260
	9.2.5 Removal of the fan runner and the fan motor	261
	9.2.6 Removal of the printed circuit board (PCB)	262
	9.2.7 Removal of the drain pan	263
	9.2.8 Removal of the drain mechanism	
	9.2.9 Removal of the float switch	264
	9.2.10 Removal of the thermistors from the liquid and gas pipes	
	9.2.11 Removal of the electronic expansion valve coil	265

	9.2.12 Removal of the inlet air thermistor	266
	9.2.13 Removal of the automatic louver motor	267
9.3	RCD-(0.8-6.0)FSN3 - 2-way cassette	268
	9.3.1 Removal of the Air filter and the Air inlet grille	268
	9.3.2 Removal of the electrical box	
	9.3.3 Removal of the optional air panel	269
	9.3.4 Removal of the fan duct and the fan	269
	9.3.5 Removal of the printed circuit board (PCB)	271
	9.3.6 Removal of the float switch	272
	9.3.7 Removal of the drain mechanism	272
	9.3.8 Removal of the drain pan	272
	9.3.9 Removal of the thermistors from the liquid and gas pipes	273
	9.3.10 Removal of the electronic expansion valve coil	274
	9.3.11 Removal of the automatic louver motor	274
	9.3.12 Remove the Anti bacterial agent case	275
9.4	RPC-(3.0-6.0)FSN3E - Ceiling type	276
	9.4.1 Removal of the air filter	276
	9.4.2 Removal of the side panel	276
	9.4.3 Removal of the air outlet grille	276
	9.4.4 Removal of the fan motor	277
	9.4.5 Removal of the fan shaft support	278
	9.4.6 Removal of the coupling	278
	9.4.7 Removal of the automatic louver motor	278
	9.4.8 Removal of the thermistors from the liquid and gas pipes	279
	9.4.9 Removal of the printed circuit board (PCB)	280
9.5	RPC-(1.5-6.0)FSN3 - Ceiling type	281
	9.5.1 Removing Air Filter and Air Inlet Grille	281
	9.5.2 Removing Side Cover	281
	9.5.3 Removing Louver	282
	9.5.4 Removal of the fan motor	282
	9.5.5 Removing Bearing (Except for RPC-1.5 and 2.0FSN3)	284
	9.5.6 Removing Coupling (Except for RPC-1.5 and 2.0FSN3)	285
	9.5.7 Removing Auto Louver Motor	286
	9.5.8 Removal of the thermistors from the liquid and gas pipes	286
	9.5.9 Removing Electronic Expansion Valve Coil	287
	9.5.10 Removal of the printed circuit board (PCB)	289
9.6	RPI-(0.6-6.0)FSN4E - Ducted indoor unit	290
	9.6.1 Removal of the electrical box	290
	9.6.2 Removal of the inlet and outlet air thermistors	
	9.6.3 Removal of the thermistors from the liquid and gas pipes	
	9.6.4 Removal of the fan parts	
	9.6.5. Removal of the drain mechanism	203

	9.6.6 Removal of the float switch	294
	9.6.7 Removal of the air filter	294
9.7	RPI-(8.0-20.0)FSN3(P)E(-f) - Ducted indoor unit	295
	9.7.1 Removal of the electrical box cover	295
	9.7.2 Removal of electrical components	295
	9.7.3 Removal of the inlet and outlet air thermistors	295
	9.7.4 Removal of the thermistors from the liquid and gas pipes	297
	9.7.5 Removal of the drain pan	297
	9.7.6 Fan removal	298
	9.7.7 Removal of the float switch	301
	9.7.8 Removal of the air filter	302
9.8	RPIM-(0.6-1.5)FSN4E - Ducted indoor unit	303
	9.8.1 Removal of the electrical box	303
	9.8.2 Removal of the inlet and outlet air thermistors	303
	9.8.3 Outlet air thermistor	304
	9.8.4 Removal of the fan parts	305
	9.8.5 Removal of the float switch	306
	9.8.6 Removal of the air filter	306
9.9	RPK-FSN(H)3M - Wall mounted	307
	9.9.1 Removal of the air filter	307
	9.9.2 Removal of the front panel	307
	9.9.3 Electrical Box Structure	311
	9.9.4 Remove the electrical box cover	312
	9.9.5 Remove the switch cover	312
	9.9.6 Replacing PCB1 for Control	313
	9.9.7 Removing Electrical Box	315
	9.9.8 Removing AS Motor	317
	9.9.9 Removing Drain Pan	317
	9.9.10 Removing Heat Exchanger	320
	9.9.11 Removing Thermistors for Freeze Protection, Gas Pipe, Outlet Air and Inlet Air	323
	9.9.12 Removing Fan and Fan Motor	
	9.9.13 Removing Electronic Expansion Valve Coil	329
	9.9.14 Removing Horizontal Louver	331
9.10	RPF(I)-(1.0-2.5)FSN2E - Floor and Floor concealed type	332
	9.10.1 Removal of the air inlet grille	332
	9.10.2 Removal of the air filter	332
	9.10.3 Removal of the air outlet grille	332
	9.10.4 Removal of the front panel	333
	9.10.5 Removal of the fan motor	333
	9.10.6 Removal of the printed circuit board (PCB)	334
	9.10.7 Removal of the thermistors from the liquid and gas piping	334
9.11	KPI-(252-2002)(E/X)4E - Energy recovery and active energy recovery ventilation units	335

	9.11.1 System description	335
	9.11.2 Structure and part names	335
	9.11.3 Service cover location	335
	9.11.4 Removal of Heat Exchanger	336
	9.11.5 Removal of the air filter	336
	9.11.6 Removal of the float switch (X4E series only)	337
	9.11.7 Removal of the damper motor	
	9.11.8 Removal of the electrical box	
	9.11.9 Removal of the PCB	
	9.11.10 Removal of the fan motor	
	9.11.11 Removal of the DX-Coil Module (X4E series only)	
9.12	DX-Interface	
	9.12.1 Structure and part names	
	9.12.2 Removal of the electrical components	342
10.	Troubleshooting	343
10.1	Electronic expansion valve check procedure	344
10.2	Procedure for checking fan motors in indoor units	344
10.3	Inspection of other components	346
10.4	Outdoor and indoor alarm codes	347
10.5	DX-Interface EXV-(2.0-10.0)E2 or KPI-(E/X)4E alarm codes	349
11.	Maintenance notes	254
11.1	Regular equipment maintenance	
	11.1.1 Necessary tools, equipment and consumable for regular maintenance	352
11.2	Indoor cleaning	353
	11.2.1 Cleaning the built-in 4-way indoor unit RCI(M)	353
	11.2.2 Cleaning the built-in 2-way indoor unit (RCD)	356
	11.2.3 Cleaning of the wall-type indoor unit (RPK)	
	11.2.4 Cleaning the floor console and floor concealed console indoor unit RPF(I)	
	11.2.5 Cleaning of the ceiling-type indoor unit (RPC)	360
11.3	Cleaning of KPI units	363
11.4	Econofresh kit	365
11.5	Collection of refrigerant to replace the indoor unit	365
11.6	Cleaning agents for heat exchanger	366
	11.6.1 Recommended specifications of cleaning agents for aluminium fins	366
	11.6.2 Particularities and benefits	366

1. General information

Index

1.1	General information	2
	1.1.1 Introduction	2
1.2	Applied symbols	3
1.3	Product classification and line-up.	4
	1.3.1 Classification of indoor unit models	4
	1.3.2 Classification of KPI models	4
	1.3.3 Classification of DX-Interface models	4
	1.3.4 Classification of Econofresh models	4
	1.3.5 Product line-up: indoor units	5
	1.3.6 Product line-up: KPI energy recovery unit	9
	1.3.7 Product line-up: DX-Interface	9
	1.3.8 Product line-up: Econofresh	9
	1.3.9 Accessory code list	10
	1.3.10 Multi-Kits	11
	1.3.11 Individual remote controls	12
	1.3.12 Receiver kit for combination with wireless remote control switch	12
	1.3.13 Centralised remote controls	13
	1.3.14 Building air conditioning controls	13
	1.3.15 Gateways for building management systems (BMS)	14
	1.3.16 Control support devices	14
	1.3.17 Control accessories	15
	1.3.18 Other devices compatible with HITACHI Air Conditioning systems	15

1.1 General information

©Copyright 2016 Johnson Controls-Hitachi Air Conditioning Spain, S.A.U. - All rights reserved.

No part of this publication may be reproduced, copied, filmed or transmitted in any shape or form without the permission of Johnson Controls-Hitachi Air Conditioning Spain, S.A.U.

Within the policy of continuous improvement of its products, Johnson Controls-Hitachi Air Conditioning Spain, S.A.U. reserves the right to make changes at any time without prior notification and without being compelled to introduce them into products subsequently sold. This document may therefore have been subject to amendments during the life of the product.

HITACHI makes every effort to offer correct, up-to-date documentation. Despite this, printing errors cannot be controlled by HITACHI and are not its responsibility.

As a result, some of the images or data used to illustrate this document may not refer to specific models. No claims will be accepted based on the data, illustrations and descriptions included in this manual.

No type of modification must be made to the equipment without prior, written authorization from the manufacturer.

1.1.1 Introduction

HITACHI offers the SYSTEM FREE range of indoor units, the main advantage of which is that they can be combined with UTOPIA and SET-FREE series outdoor units.

This eliminates the need to duplicate models of indoor units and reduces stock.

SYSTEM FREE Line up of Indoor Units	Complementary systems
RCI-FSN4 RCIM-FSN4(E) RCD-FSN3 RPC-FSN3 RPC-FSN3E RPI-FSN(3/4)(P)E(-f) RPIM-FSN4E(-DU) RPK-FSN(H)3M RPF-FSN2E RPFI-FSN2E	KPI-(E/X)4E DX-Interface EXV-E2 Econofresh EF-456NE

For RCI-FSN4, RCIM-FSN4(E), RCD-FSN3, RPC-FSN3 and RPK-FSN3M, combinations with IVX Premium and IVX Standard series 1, as well as SET FREE FSXN1E and FSXNH(E) series, are recommended in order to obtain the maximum performance.

1.2 Applied symbols

During normal air conditioning system design work or unit installation, greater attention must be paid in certain situations requiring particular care in order to avoid damage to the unit, the installation or the building or property.

Situations that jeopardise the safety of those in the surrounding area or that put the unit itself at risk will be clearly indicated in this manual.

To indicate these situations, a series of special symbols will be used to clearly identify these situations.

Pay close attention to these symbols and to the messages following them, as your safety and that of others depends on it.

DANGER

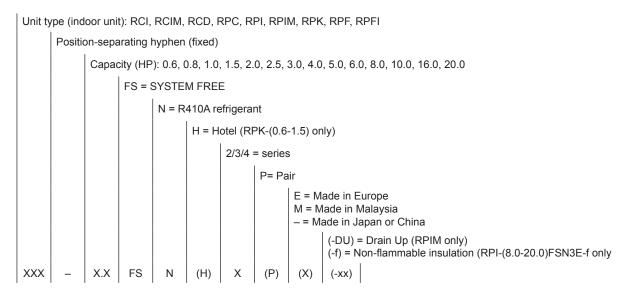
- The text following this symbol contains information and instructions relating directly to your safety and physical wellbeing.
- Not taking these instructions into account could lead to serious, very serious or even fatal injuries to you and others in the proximities of the unit.

In the texts following the danger symbol you can also find information on safe procedures during unit installation.

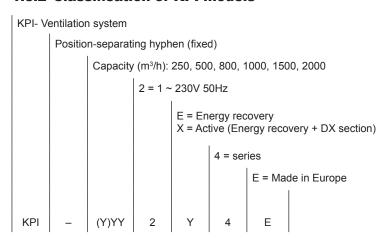
⚠ CAUTION

- The text following this symbol contains information and instructions relating directly to your safety and physical wellbeing.
- Not taking these instructions into account could lead to minor injuries to you and others in the proximities of the unit.
- Not taking these instructions into account could lead to unit damage.

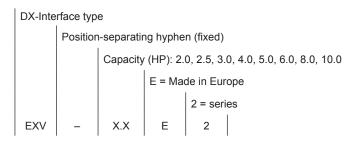
In the texts following the caution symbol you can also find information on safe procedures during unit installation.


i NOTE

- The text following this symbol contains information or instructions that may be of use or that require a more thorough explanation.
- Instructions regarding inspections to be made on unit parts or systems may also be included.


HITACHI

1.3 Product classification and line-up


1.3.1 Classification of indoor unit models

1.3.2 Classification of KPI models

1.3.3 Classification of DX-Interface models

1.3.4 Classification of Econofresh models

Econofresh unit type

| Position-separating hyphen (fixed) | Capacity (HP): 4.0, 5.0, 6.0 | N: R410A refrigerant | E = Made in Europe | EF | - 456 | N | E |

1.3.5 Product line-up: indoor units

- The indoor unit models and codes are the last updated at time of publication; other previous models and coming developments could be available for combination with the outdoor unit series.
- Check the exact classification for each unit (model, type, power and series) in "1.3.1 Classification of indoor unit models".

RCI and RCIM indoor units

RCI		RCIM	
	*	**	
4-way cass	ette	4-way cassette	(compact)
Unit	Code	Unit	Code
		RCIM-0.6FSN4(E) (*)	60278215 (7E411137)
		RCIM-0.8FSN4(E)	60278216 (7E411100)
RCI-1.0FSN4	70405001	RCIM-1.0FSN4(E)	60278217 (7E411101)
RCI-1.5FSN4	70405002	RCIM-1.5FSN4(E)	60278218 (7E411102)
RCI-2.0FSN4	70405003	RCIM-2.0FSN4(E) (**)	60278219 (7E411103)
RCI-2.5FSN4	70405004	RCIM-2.5FSN4(E) (**)	60278220 (7E411104)
RCI-3.0FSN4	70405005		
RCI-4.0FSN4	70405007		
RCI-5.0FSN4	70405008		
RCI-6.0FSN4	70405009		
Panel		Panel	
P-N23NA2 (without Motion Sensor)	70532000	P-AP56NAM (without Motion Sensor) 60297297	

- The RCI and RCIM models must be used in combination with the indicated panels.
- (*): 0.6 HP Indoor Units can only be used in combination with SET FREE FSXN1E, FSXNH(E) and FSN3E series.
- (**): 1 indoor unit combinations with IVX Premium / Standard series not allowed.

♦ RCD and RPC indoor units

- The RCD models must be used in combination with the indicated panels.
- (*): 1 indoor unit combinations with IVX Premium / Standard series not allowed.

♦ RPI and RPIM indoor units

RPI				RPIM	
			* *		
			C.	F	
	Indoor	ducted unit		Indoor ducted unit	(compact)
Unit	Code	Unit	Code	Unit	Code
DDI 0 0501145 (#)	75404007			RPIM-0.6FSN4E (*)	7E430037
RPI-0.6FSN4E (*)	7E424037			RPIM-0.6FSN4E-DU (*)	7E431037
DDI O OFCNAF	75404040			RPIM-0.8FSN4E	7E430013
RPI-0.8FSN4E	7E424013			RPIM-0.8FSN4E -DU	7E431013
RPI-1.0FSN4E	7E424014			RPIM-1.0FSN4E	7E430014
RPI-1.0F5N4E	7 E424014			RPIM-1.0FSN4E -DU	7E431014
RPI-1.5FSN4E	7E424015			RPIM-1.5FSN4E	7E430015
RPI-1.5F5N4E	7 E424015			RPIM-1.5FSN4E -DU	7E431015
		RPI-2.0FSN4E	7E424016		
		RPI-2.5FSN4E	7E424017		
		RPI-3.0FSN4E	7E424018		
		RPI-4.0FSN4E	7E424020		
		RPI-5.0FSN4E	7E424021		
		RPI-6.0FSN4E	7E424022		

i NOTE

- (*): 0.6 HP Indoor Units can only be used in combination with SET FREE FSXN1E and FSXNH(E) series.
- (**): In combination with UTOPIA IVX Premium/Standard series: 1 indoor unit system only.
- (***): RPI-FSN3PE(-f) can only be used in combination with SET FREE FSXN1E, FSXNH(E) and FSN3 series.

♦ RPK, RPF and RPFI indoor units


RPK		RF	F	RP	FI
		*	*		
	1 %				t
Wall ty	pe	Floor	type	Floor conc	ealed type
Unit	Code	Unit	Code	Unit	Code
RPK-0.6FSN3M (*)	60278145				
RPK-0.6FSNH3M (*)	60278153				
RPK-0.8FSN3M	60278146				
RPK-0.8FSNH3M	60278154				
RPK-1.0FSN3M	60278147				
RPK-1.0FSNH3M	60278155	RPF-1.0FSN2E	7E450001	RPFI-1.0FSN2E	7E460001
RPK-1.5FSN3M	60278148				
RPK-1.5FSNH3M	60278156	RPF-1.5FSN2E	7E450002	RPFI-1.5FSN2E	7E460002
RPK-2.0FSN3M	60278149	RPF-2.0FSN2E (**)	7E450003	RPFI-2.0FSN2E (**)	7E460003
RPK-2.5FSN3M	60278150	RPF-2.5FSN2E (**)	7E450004	RPFI-2.5FSN2E (**)	7E460004
RPK-3.0FSN3M	60278151				
RPK-4.0FSN3M	60278152				
Expansion va	alve kit (1)				
EV-1.5N1 ⁽¹⁾	60921791				

- (*) 0.6 HP Indoor Units can only be used in combination with SET FREE FSXN1E and FSXNH(E) series.
- (**) 1 indoor unit combinations with IVX Premium / Standard series not allowed.
- (1) For RPK-(0.6-1.5)FSNH3M models only.

1.3.6 Product line-up: KPI energy recovery unit

1.3.7 Product line-up: DX-Interface

1.3.8 Product line-up: Econofresh

The EF-456NE unit can only be installed in combination with the following units (Sales from April 2014):

- RPI-4.0FSN4E (7E424020)
- RPI-5.0FSN4E (7E424021)
- RPI-6.0FSN4E (7E424022)

1.3.9 Accessory code list

HITACHI has a wide range of accessories and remote control systems that can be used with the SET FREE and UTOPIA outdoor units. Consult the Technical Catalogue for controls and for the corresponding outdoor units.

Name	Unit Reference	Description	Code	Figure
PD-75A	RCI-FSN4		60291763	
PD-75C	RCIM-FSN4(E)	Duct adapter for fresh outdoor air intake kit	60292014	
PD-150D	RCD-FSN3	TOT TIESTI OULUOOF AII IIILAKE KIL	60292064	
OACI-160K2	RCI-FSN4	Fresh outdoor air intake kit	60291761	
TKCI-160K	RCI-FSN4	T-shaped duct connection kit for fresh outdoor air intake ki	60291762	
PDF-71C1	RCI-(1.0-2.5)FSN4	Duct connecting flange for	60299436	
PDF-160C1	RCI-(3.0-6.0)FSN4	indoor air outlet	60299437	
PI-160LS1	RCI-FSN4	3-way outlet parts set	60291756	
F-160LK	RCI-FSN4	Antibacterial long life air filter (installation on the panel)	60291760	
B-160H2	RCI-FSN4	Filter Box (Adapter for deodorising filter)	60291759	
F-71L-D1	RCI-(1.0-2.5)FSN4	Deodorant air filter	60291757	
F-160L-D1	RCI-(3.0-6.0)FSN4	(installation on the Filter Box B-160H2)	60291758	
B-90HD	RCD-(0.8-3.0)FSN3	Filter Box	60292061	G B
B-160HD	RCD-(4.0-6.0)FSN3	(Adapter for antibacterial long life air filter)	60292062	
F-90MD-K1	RCD-(0.8-3.0)FSN3	Antibacterial long life air filter high performance filter (installation on the follows)	60292058	
F-160MD-K1	RCD-(4.0-6.0)FSN3	F-90MD-K1→B-90HD F-160MD-K1→B-160HD)	60292059	
F-56LPC1	RPC-(1.5-2.0)FSN3		60299279	
F-90LPC1	Long life filter		60299280	
F-160LPC1	RPC-(4.0-6.0)FSN3	,	60299281	

Name	Unit Reference	Description	Code	Figure
DUPC-63K1			60291935	<u> </u>
DUPC-71K1	RPC-FSN3	Drain-up Mechanism	60291936	
DUPC-160K1			60291937	
PS-MSK2	RCI-FSN4		70590903	
SOR-NEP	RPC-FSN3	Motion sensor kit	60291825	
SOR-NEC	RCIM-FSN4(E)	Wollon Sensor Kit	60292011	
SOR-NED	RCD-FSN3		60292055	
SLT-30-200-L600	KPI		70550200	
SLT-30-250-L600		Noise damper	70550201	TON .
SLT-30-300-L600		Noise damper	70550202	MA.
SLT-30-355-L600			70550203	
HEF-252			70552201	
HEF-502			70552202	
HEF-802	KPI	High efficiency filter	70552203	
HEF-1002		riigii cinolorioy iittei	70552204	
HEF-1502			70552205	
HEF-2002			70552206	

1.3.10 Multi-Kits

Name	Unit Reference	Description	Code	Figure													
E-102SN4			70524201														
E-162SN4			70524202														
E-242SN3			70524104														
E-302SN3					70524105												
E-52XN3	OFT FRE	Line Decemb	70525100														
E-102XN3	SET FREE	Line Branch	E LINE BIANCH	70525101													
E-162XN3																	70525102
E-202XN3			70525103														
E-242XN3			70525104														
E-322XN3			70525106														
MH-84AN1			70522009														
MH-108AN	SET FREE	Header Branch	70522008	2444444													
MH-108XN			70523108														

1.3.11 Individual remote controls

Name	Description	Code	Figure
PC-ARFPE	Remote control with timer	70510002	WHOSE
PC-ARH	Simplified remote control	60291486	* O O O O O O O O O O O O O O O O O O O
PC-AWR	Wireless remote control	60291056	

1.3.12 Receiver kit for combination with wireless remote control switch

Receiver kit name	Indoor Unit application	Compatible Wireless remote control	Code	Figure
PC-ALH3	RCI-FSN4	PC-AWR	60291767	on the panel
PC-ALHC1	RCIM-FSN4(E)	PC-AWR	60292003	TIMER FILTER DEF RUN
PC-ALHD1	RCD-FSN3	PC-AWR	60292053	ENERGENCY (HEAT) (000.)
PC-ALHP1	RPC-FSN3	PC-AWR	60291823	
PC-ALHZ	RPI-FSN(3/4)(P)E, RPIM-FSN4E(-DU), RPF(I)-FSN2E	PC-AWR	60291473	on the wall
PC-ALHZF	RCI-FSN4, RCIM-FSN4(E), RCD-FSN3, RPK-FSN(H)3M RPC-FSN3	PC-AWR	60291789	PRUN (200) DEF (EST) TIMER (EST)

1.3.13 Centralised remote controls

Name	Description	Code	Figure
PSC-A64GT	Touch screen central station	60291730	HERON E C C
PSC-A32MN	Touch screen central station mini	60291966	HTMOR TO THE TOTAL PROPERTY OF THE TOTAL PRO
PSC-A64S	Centralised remote control	60291479	HATACHE GAME
PSC-A16RS	Centralised ON/OFF control	60291484	Territor Courts

1.3.14 Building air conditioning controls

Name	Description	Code	Figure
CSNET WEB (PSC-A160WEB1)	Centralised control system which runs CSNET WEB software to control the indoor units	7E512000	E manufacture of the second
CSNET Manager LT	Centralised control with a touch interface of 12 inches which runs CSNET MANAGER software to control the indoor units.	7E512201	
CSNET Manager XT	Centralised control with a touch interface of 17 inches which runs CSNET MANAGER software to control the indoor units.	7E512202	The state of the s
HC-A64NET	H-LINK gateway used by CSNET MANAGER Screens to communicate with indoor units (Max. 64 indoor units)	7E512200	Mark

1.3.15 Gateways for building management systems (BMS)

Name	Description	Code	Figure
HC-A8MB	Integration with installation with intelligent control (Building Management System) Gateway Interface to MODBUS systems (Max. 8 indoor units).	7E513204	
Integration with installation with intelligent control (Building HC-A64MB Management System) Gateway Interface to MODBUS systems (Max. 64 indoor units). 7E513205		Miller	
HC-A16KNX Integration with installations with intelligent control (BMS). Gateway Interface to KNX systems. 7E513300			
KNX001	Integration with installations with intelligent control (BMS) through CSNET WEB. Gateway Interface to KNX systems.	7E5121000	Macon Service of Servi
HARC-BX E (A)	Integration with installation with intelligent control (Building Management System) Gateway Interface to LONWORKS systems. (H-LINK I communication) (Max. 64 units with 8 parameters)	System) Gateway Interface to LONWORKS LINK I communication) (Max. 64 units with 8	
HARC-BX E (B)	Integration with installation with intelligent control (Building Management System) Gateway Interface to LONWORKS systems. (H-LINK I communication) (Max. 32 units with 16 parameters)	60290875	

1.3.16 Control support devices

Name	Description	Code	Figure
PSC-A1T	Programmable timer	60291482	HETACHS HOLD AMERICA
PSC-6RAD	H-LINK RAC Adapter	60063017	
PC-A1IO	Integration of external equipment into H-LINK	7E519000	
PSC-5HR	SC-5HR H-LINK Relay 60		CHARGE
THM-R2AE	Remote temperature sensor (THM4)	7E299907	.9

1.3.17 Control accessories

Name	Description	Code	Figure
Wall support	Wall mounted support (for both CSNET MANAGER LT/XT)	7E512300	
Stand support	Stand mounted support (for both CSNET MANAGER LT/XT)	7E512301	
PCC-1A	Optional function connector	70590901	
PRC-10E1	2P-Extension cord (10 metres)	7E790211	
PRC-15E1	2P-Extension cord (15 metres)	7E790212	
PRC-20E1	2P-Extension cord (20 metres)	7E790213	
PRC-30E1	2P-Extension cord (30 metres)	7E790214	
Net Configuration Kit	Net configuration kit for HC-A(8/64)MB and HC-A64NET	7E512306	PA DE MINICOLO

1.3.18 Other devices compatible with HITACHI Air Conditioning systems

In addition to all the aforementioned HITACHI controls, there are some non-HITACHI devices for combination with HITACHI Air Conditioning systems. These are the following:

- HITACHI-AIRZONE gateway (HTI11001): Applicable to HITACHI RPI(M) units providing compatibility with the AIRZONE systems, zone-based climate-control systems.
- Power meter: Siemens power meter for CSNET WEB and CSNET Manager.
- MODBUS-BACNET gateway: Solution offered by Intesis Software company which transfers MODBUS data into BACNET data.
- MODBUS-FIDELIO gateway: Solution offered by Intesis Software company which transfers MODBUS data into FIDELIO data.

Unit installation

Index

2.1	RCI - 4-way cassette	19
	2.1.1 Accessories supplied with the unit	19
	2.1.2 Unit installation	
	2.1.3 Air panel installation: P-N23NA2	22
	2.1.4 Accessories supplied with the air panel P-N23NA2	26
2.2	RCIM - 4-way cassette (compact)	27
	2.2.1 Accessories supplied with the unit	27
	2.2.2 Unit installation	28
	2.2.3 Accessories supplied with the air panel: P-AP56NAM	30
	2.2.4 Air panel installation	31
2.3	RCD - 2-way cassette	35
	2.3.1 Accessories supplied with the unit	35
	2.3.2 Unit installation	36
	2.3.3 Accessories supplied with the air panel: P-N23DWA / P-N46DWA	39
	2.3.4 Air panel installation	39
2.4	RPC - Ceiling	41
	2.4.1 Accessories supplied with the unit RPC-FSN3	41
	2.4.2 Unit installation	42
	2.4.3 Suspension bracket installation RPC-FSN3E	42
	2.4.4 Suspension for FSN3 units	43
	2.4.5 Indoor unit installation	45
2.5	RPI(M) - Ducted indoor unit (0.6-6.0)FSN4E(-DU)	48
	2.5.1 Accessories supplied with the unit	48
	2.5.2 Unit installation	48
	2.5.3 Air duct connection	50
	2.5.4 Maintenance of the suction air filter	51
2.6	RPI - Ducted indoor unit (8/10)FSN3E(-f)	53
	2.6.1 Accessories supplied with the unit	53
	2.6.2 Unit installation	53
	2.6.3 Air duct connection	55
	2.6.4 Maintenance of the suction air filter	55
2.7	RPI - Ducted indoor unit (16/20)FSN3PE(-f)	56
	2.7.1 Unit installation	56
2.8	RPK - FSN(H)3M Wall mounted	58
	2.8.1 Accessories supplied with the unit	58

	2.8.2 Unit installation	
	2.8.3 Mounting bracket dimensions	62
2.9	RPF - Floor type, RPFI - Floor concealed type	64
	2.9.1 Accessories supplied with the unit	64
	2.9.2 Unit installation	64
	2.9.3 Change in the air outlet direction (RPFI units)	66
	2.9.4 RPF: Optional PC-ARFPE remote control location	66
2.10	KPI energy and KPI active unit	67
	2.10.1 Accessories supplied with the unit	67
	2.10.2 Unit installation	67
	2.10.3 Duct connection	70
2.11	Econofresh Kit	72
	2.11.1 Accessories supplied with the unit	72
	2.11.2 Unit installation	72
	2.11.3 Mounting the unit	73
	2.11.4 Example of installation	74
2.12	DX-Interface	75
	2.12.1 Accessories supplied with the unit	75
	2.12.2 Unit installation	
	2.12.3 Mounting method	76
	2.12.4 Thermistor installation	77
2.13	Optional accessories	79
	2.13.1 Outdoor air inlet	79
	2.13.1.1 For RCI-FSN4 indoor units: OACI-160K2 and PD-75A	81
	2.13.2 Duct adapters	83
	2.13.2.1 For RCIM-FSN4(E) indoor units: PD-75C	83
	2.13.2.2 For RCD-FSN3 indoor units: PD-150D	83
	2.13.3 T-duct connection position	84
	2.13.3.1 For RCI-FSN4 indoor units: TKCI-160k	84
	2.13.3.2 Branch pipe (PDF-71C, PDF-160CI)	85
	2.13.4 Outlet air flow interlock	87
	2.13.4.1 For RCI-FSN4 indoor units: PI-160SL1	87
	2.13.5 Filter box	89
	2.13.5.1 For RCI-FSN4 indoor units: B-160H2	89
	2.13.5.2 For RCD-FSN3E indoor units: BD-90H and BD-160HD	90
	2.13.6 Anti-bacteria filter	91
	2.13.6.1 For RCI-FSN4: F-160L-K	91
	2.13.6.2 For RCD-FSN3E indoor units: F-90MD-K1 and F-160MD-K1 (Antibacterial long life air filter)	92
	2.13.7 Deodorising filter	92
	2.13.7.1 For RCI-FSN4 indoor units: F-71L-D1 and F-160L-D1	92

2.1 RCI - 4-way cassette

2.1.1 Accessories supplied with the unit

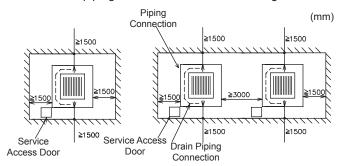
Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

♦ RCI-FSN4 indoor unit

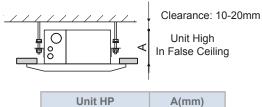
Accessory			Purpose	
Pattern (Carton Board)		1	For adjusting space of false ceiling opening	
Checking pattern (Cut out from the carton board)		1	and position of the unit	
Washer with insulation (M10)		4	For unit installation	
Washer (M10)		4		
Drain hose		1		
Wire clamp	6	1	For drain hose connection	
Pipe insulation	0	1		
Pipe insulation	0	1	For refrigerant piping connection	
Cord band		2	For fixing remote control switch wiring,	
Cord band		6	louver sensor and insulation of piping	
Insulation (5Tx50x200)		1	For covering wiring connection	
Insulation (5Tx270x270)		1	For covering drain connection	

Applicable panel


Indoor unit	Applicable panel
RCI-(1.0-6.0)FSN4	P-N23NA2 (without motion sensor)

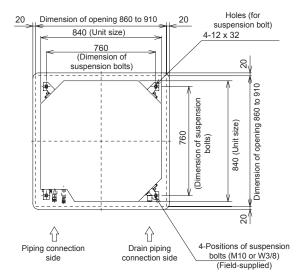
2.1.2 Unit installation

♦ Initial checks


Install the indoor unit with a proper clearance around it paying careful attention of installation direction for the piping, wiring and maintenance working space, as shown below.

Provide a service access door near the unit piping connection area on the ceiling.

Check space between ceiling and false ceiling is enough as indicated below.


Check the ceiling surface is flat for the air panel installation work.

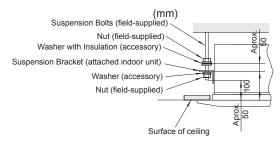
Unit HP	A(mm)
RCI-1.0 to 2.5HP	238
RCI-3.0 to 6.0HP	238

Opening of false ceiling

Cut out the area for the indoor unit in the false ceiling and install suspension bolts, as shown below:

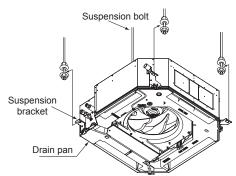
Check to ensure that the ceiling is horizontally level, otherwise water can not flow.

Strengthen the opening parts of the false ceiling.


♦ Mounting of suspension bolts

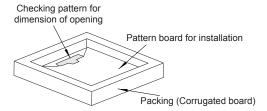
Mount suspension bolts using M10 (W3/8) as size, as shown.

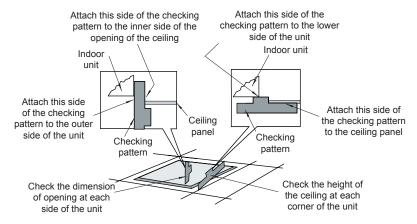
Mounting of indoor unit


Mount the nuts and the washers to the suspension bolts. Put the washer so that the surface with insulation can faces downwards as shown below:

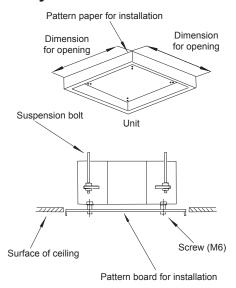
Consider piping connection side before lift indoor unit.

Lift the indoor unit by hoist, and do not put any force on the drain pain.


Secure the indoor unit using the nuts, washers.

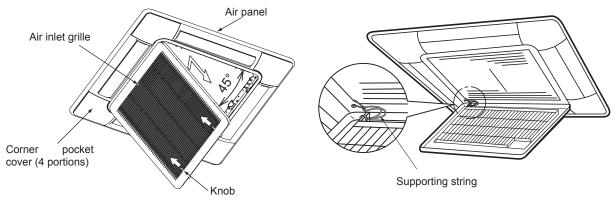

- If a false ceiling has already been installed, complete all piping and wiring work inside the ceiling before hooking-up the indoor unit.
- Secure the indoor unit using the nuts, flat washers and spring washers. (These nuts and washers are supplied, 4 pieces each).

◆ Adjusting the space between indoor units and false ceiling opening


Adjust the indoor unit to the correct position while checking with the pattern for installation.

For ceiling already completed with panels

Ceiling not completed with panels yet

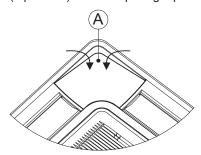


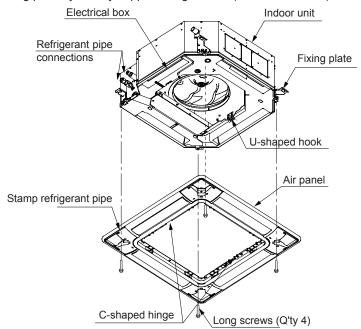
Tighten the nuts of the suspension brackets after the adjustment is completed. Apply LOCK-TIGHT paint to the bolts and nuts in order to prevent them from loosening. If not done, abnormal noises or sounds may occur and the indoor unit may come loose.

2.1.3 Air panel installation: P-N23NA2

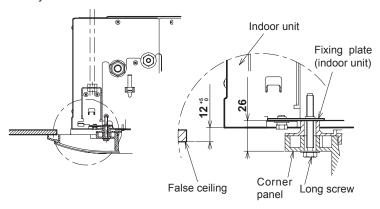
Removing Air Intake Grille from Air Panel

Push both ends of knobs at the air inlet grille toward the arrow direction, open the air inlet grille until the angle of approximately 45° from the air panel surface. After lifting the air inlet grille keeping it inclined, draw the air inlet grille forward. (Remove the filament tape (4 portions) fixing the air filter).

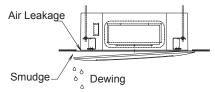

- 2 Lift the grille keeping it inclined.
- 3 Draw the grille towards the open space after lifting.


Perform the attaching work in the reverse procedure of removing for install the air intake grille. The air inlet grille can be attached from any 4 directions by rotating it. The air intake grille direction can be selected freely.

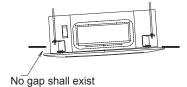
Installing Air Panel

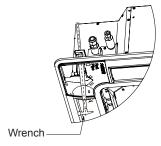

Remove the cover of the corner pocket (4 portions). Remove pulling A part toward the arrow direction.

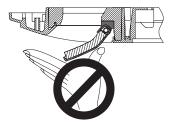
- 2 Pull down the U-shaped hook (at 2 positions) located at the indoor unit side.
- 3 Mount the air panel temporarily. Fit the corner position of the refrigerant pipe connection at the indoor unit and the position stamped as "Ref. Pipe". Then, catch the C-shaped hinges (2 portions) onto the U-shaped hooks (2 portions).
- Fix the air panel to the fixing plate by factory supplied long screws (M6 cross screws).



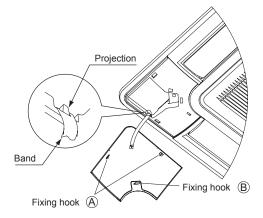
- 5 Tighten the long screws until touching the stopper to the fixing plate. Check to ensure that the distance between the fixing plate under-surface and the corner panel under-surface is 26mm.
- 6 When tightening the long screws to prevent air leakage and to be no gap between the false ceiling surface and the indoor unit, the inner circumference of the air panel (the position to attach the air inlet grille) may be slightly deformed. However, it is not abnormality.




If tighten long screws insufficient, may cause something wrong as below.


If any gap has even though tighten long screws sufficient, readjust the height of indoor unit.

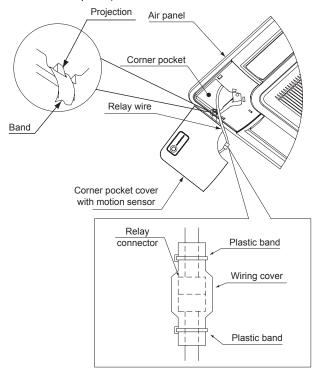
It's able to adjust the indoor unit height by using wrench from the corner pocket.

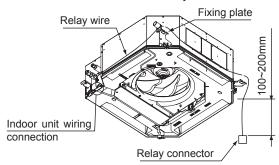

- Too considerable adjustment of height cause dewing from drain-pan.
- Do not turn the air louver by hand. If moved, the louver mechanism would be damaged.

◆ Attachment of Corner Pocket Cover

Attach the corner pocket covers after the air panel is completely assembled.

1 Catch the band at the rear side of the corner pocket cover onto the projection at the air panel as shown.

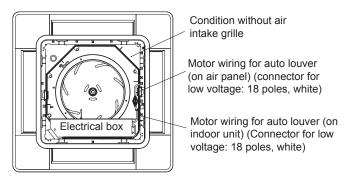

2 Insert and push the fixing hooks (2 portions) at ${}^{ ext{\textcircled{A}}}$ to the air panel and insert and push the fixing hook (1 portion) at B to the air panel.


◆ Attachment of corner pocket cover with motion sensor PS-MSK2 on the air panel model **P-N23NA2**

The corner pocket cover with motion sensor can be attached to any of corners. Determine the attaching place as user's request.

1 Connect the relay wire (attached in the air panel) to CN10 in the electrical box.

2 Run the relay wire to the corner pocket cover with motion sensor through the top of fixing plate for the indoor units. Set a length of 100mm to 200mm from the indoor unit to the relay connector.


- 3 Clamp the extra length of the relay wire by the cord band and store it at inside the ceiling.
 - a. Draw out the relay wire from the corner pocket of the air panel. Connect the wiring for motion sensor at the corner pocket cover to the relay connector. After connecting, cover the relay connector connection by the wiring cover and fix the wiring cover by the plastic bands. Catch the band at the rear side of the corner pocket cover with motion sensor onto the projection at the air panel.
 - b. While pushing the wiring into the corner pocket, insert the fixing hooks (2 portions) at (A) to the square hole at the air panel, and push the corner pocket cover. Then, insert and push the fixing hook (1 portion) at ® to the square hole at the air panel.

i NOTE

- Catch securely the band onto the projection. If not, the comer pocket cover may fall down when removing it so that may cause
- Catch securely the fixing hooks of the corner pocket cover to the air panel. If not, the fixing hooks will be damaged.

◆ Electrical connection of the air panel

1 The following connectors are used in the air panel. Remove the tape fixing the wiring connectors on the air panel and pull out them as shown in the figure below. Connect them with the wiring connectors on the indoor unit.

2 After completing the wiring connection of the air panel, attach the air inlet grille. Perform the attaching work in the reverse procedure of removing.

2.1.4 Accessories supplied with the air panel P-N23NA2

Check that the following accessories are supplied with the unit.

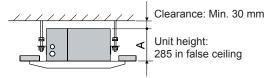
Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

Accessory	Appearance	Quantity	Purpose
Long bolt (M6 x 50)	-0	4	For panel fixing

2.2 RCIM - 4-way cassette (compact)

2.2.1 Accessories supplied with the unit

Check to ensure that the following accessories are supplied with the unit.

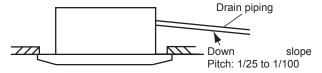

- Contact your HITACHI distributor if any of the accessories have not been supplied with the unit.
- The hose clamp, screws, washers and plastic cord clamps are placed together with the pipe insulation.
- The air panel, remote control switch and branch pipes are not included as they are optional accessories.

Accessory	Appearance	Quantity	Purpose	
Checking scale (cut and take it out from the carton board)		1	For adjusting space of false ceiling opening and position of the unit	
Cross recessed head screws (M5)		4	For fitting paper pattern	
Washer with insulation material (M10)		4	For unit installation	
Washer (M10)		4	1 of unit installation	
Drain hose		1	For drain hose connection	
Hose clamp		1		
Insulation (5Tx50x200)		1	For covering wiring connection	
Insulation (5Tx100x500)		1	For covering drain connection	
Insulation (5Tx25x500)		1	For covering drain connection	

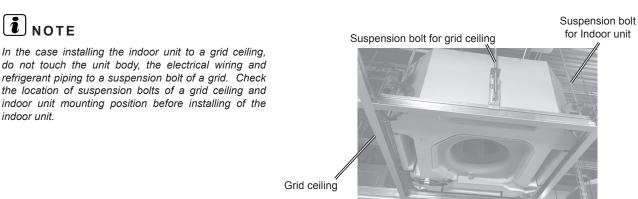
2.2.2 Unit installation

♦ Initial checks

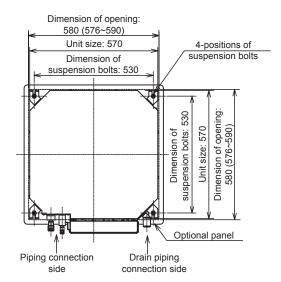
Check that there is enough space between the false ceiling and the ceiling of the room to house the unit. Its height must be less than the measured distance. Consult the corresponding chapter of the Technical Catalogue for information on the unit measurements.


Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

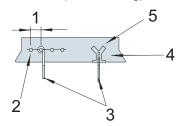
When equipping the duct adapter (optional), set up a service access door at the duct adapter side in order to install the duct adapter. Refer to the installation manual of the duct adapter for details.


Install a service hatch near the pipe connection area and electrical junction box for installation and maintenance work.

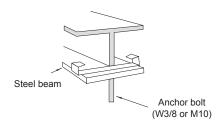
Check that the drain hose can be installed maintaining the necessary downward slope (1/25 to 1/100).


Check that the ceiling surface where the air panel is to be installed is completely horizontal.

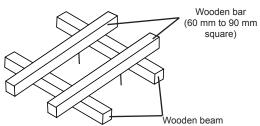
♦ Installation

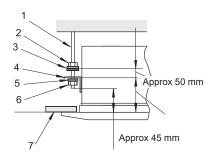

Cut the area of the unit in the false ceiling and reinforce the opening made.

Install the M10 (3/8") suspension bolts depending on the type of surface:



Concrete beams


- 1 150 to 160 mm
- 2 Steel
- 3 Anchor bolt (W3/8 or M10)
- 4 Concrete
- 5 Insert (100 to 150 kg)


Steel beams

- 1 Suspension bolts (field-supplied)
- 2 Nut (field-supplied)
- 3 Washer with insulation accessory
- 4 Suspension bracket (attached indoor unit)
- 5 Washer (accessory)
- 6 Nut (field-supplied)
- 7 Ceiling

Thread on the nuts and fit the washers for all the bolts, as shown in the figure.

Fit two suspension brackets onto the nut and washer of each bolt, starting on one side.

Check that the nuts and washers are correctly secured with the suspension bracket retainers and fit the brackets onto their nuts and washers on the other side.

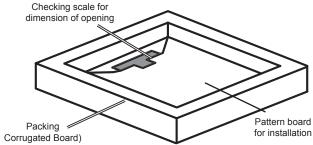
Fit the washers with the insulation facing downwards, as shown in the figure. Bear in mind the position of the side for pipe connection before lifting the indoor unit.

Where a false ceiling is already installed, install and prepare the pipes and cables on the indoor unit before lifting it.

- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- Request the assistance of another person to lift the unit.

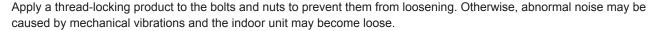
Lift the unit carefully, without exercising pressure on the drain pan.

Fit the nuts, flat washers and spring washers supplied (4 of each) to secure the indoor unit.


Check that the condensate discharge system in the indoor unit works correctly. To do so, check the level of the drain pan using a spirit level.

Adjusting the space between the indoor unit and the opening in the false ceiling

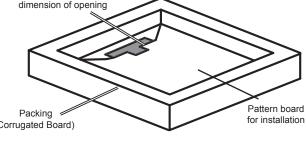
Pattern Board for Installation and Scale for Dimension of Opening

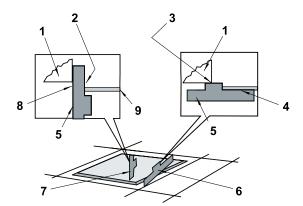

- 1 For installation work, the pattern board is required. The pattern board for installation and the checking scale are printed on the back side of the packing.
- 2 Cut off the checking scale for dimension of opening from the packing.

- 1 Indoor unit
- 2 Attach this side of the checking scale to the inner side of the opening of the ceiling
- 3 Attach this side of the checking scale to the lower side of the
- 4 Attach this side of the checking scale to the ceiling panel
- 5 Checking scale.
- 6 Check the height of the ceiling at each corner of the unit
- 7 Check the dimension of the opening at each side of the unit
- 8 Attach this side of the checking scale to the outer side of the opening
- 9 Ceiling Panel

For panelled ceilings.

Once adjusted, tighten the suspension bracket nuts.


2.2.3 Accessories supplied with the air panel: P-AP56NAM

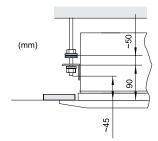

Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

Accessory	Appearance	Quantity	Purpose
Long bolt (M5)	-6	4	For panel fixing.

2.2.4 Air panel installation

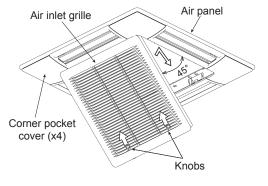
⚠ CAUTION


Take care while the air panel is unpacked and protect it by placing it on insulating or soft material so as not to scratch the sealant insulation.

- Do not move the louver by hand as it may cause a damage to the louver mechanism.
- Do not apply an excessive force to the air outlet part to prevent any breakage.

Location of the suspension brackets

Make sure the suspension brackets on the indoor unit are approximately 90 mm in height above the false ceiling.


Remove the air inlet grille from the air panel

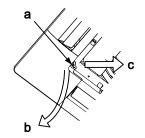
Remove the Air inlet grille from the air panel:

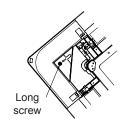
- 1 While pushing both ends of knobs at the air inlet grille (as shown in the illustration), open the air inlet griller until an angle of aproximately 45° in relation to the air panel surface.
- 2 Lift the grille while keeping it tilted.

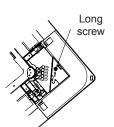
Although the Air inlet griller can be opened until an angle up to 90° from the Air panel surface, it can not be removed.

CAUTION

Do not allow the grille to swing freely or the securing mechanism will break.

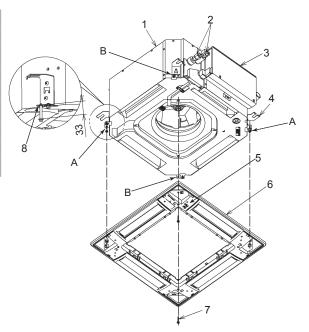

Air panel installation


- 1 Remove the screw located next to mark -a-.
- 2 Press the securing tabs in the direction of the arrow -b-.
- 3 Remove the corner cover by pulling it in direction -c-.



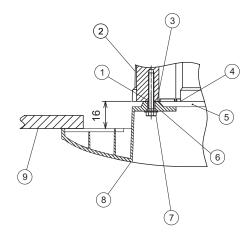
Adjust the corner of the indoor unit at the refrigerant connection part to the position marked as PIPE SIDE.

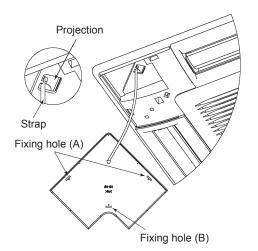
Attach the air panel to the long screw (2 position) so that it can be temporarily fitted and adjusted.



Nº	Part
1	Indoor unit
2	Refrigerant pipe connections
3	Electrical box
4	Fixing plate (Indoor unit)
5	Indication "PIPE SIDE"
6	Air panel
7	Long screw (4)
8	Mounting sheet

Fit the air panel in the attachment position using the screws supplied (M5). First secure the screws in positions -A- and -B- and then the rest.

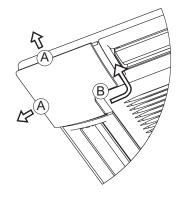



- 1 Tighten the fixing screw completely
- 2 Indoor unit
- 3 Fixing sheet for air panel (indoor unit side)
- 4 Bottom side of indoor unit
- 5 Sealing gasket
- 6 Fixing sheet for air panel (panel side)
- 7 Fixing screw for air panel
- Air panel
- Fase ceiling

Check that there are no gaps in the touching surface between the indoor unit and the air panel. Gaps may cause air leaks or condensation.

Attach the corner pocket covers (4 portions) after the air panel is mounted completely.

a. Catch the band at the rear side of the corner pocket cover onto the projection at the air panel as shown in the next figure.

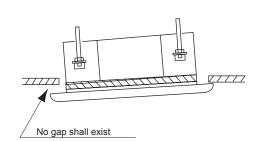


b. Insert the fixing hooks (2 portions) at A to the air panel and insert the fixing hook (1 portion) at B to the air panel.

i note

- Catch securely the strap onto the projection. If not, the comer pocket cover may fall down when removing it so that may cause injury.
- Catch securely the fixing hooks of the corner pocket cover to the air panel.

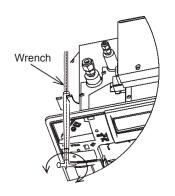
Air leakage


Smudge

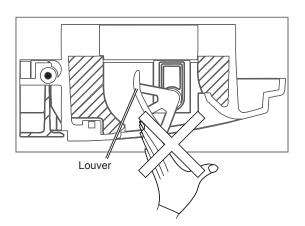
Considerations following air panel installation

Tighten the long bolts appropriately. Otherwise, installation faults may be caused.

Readjust the height of the indoor unit if gaps are seen around it.


Use long bolts and nuts for readjustment, as indicated below.

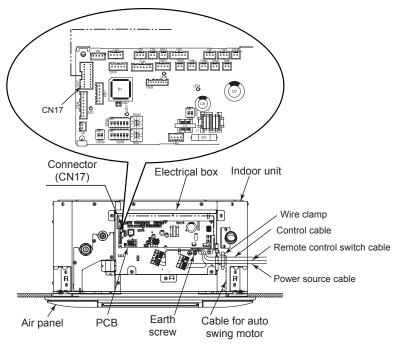
Dewing


Once the air panel is installed, the final height of the indoor unit can be adjusted using a wrench through the corner cover.

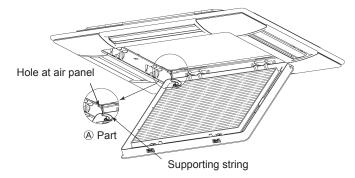
Excessively adjusting the height leads to condensation leaks from the drain pan.

Do not move the air louver by hand. The drive mechanism may be damaged.

♦ Electrical connection of the air panel



CAUTION


- Perform securely the electrical wiring work. If the electrical work is not completed, heat generation at the connection, a fire or an electric shock may occur.
- Make sure that the wires are securely fixed in order not to apply an external force to the terminal connections of the wirings. If fixing
 is not completed, heat generation or a fire will occur.
- 1 The following connectors are used in the air panel. Remove the tape fixing the wiring connectors on the air panel and pull out them as shown in the figure below. Connect them with the wiring connectors to CN17 in the electrical box as the following figure.

Before the electrical wiring work, turn OFF the power source. If the connectors are connected without turning OFF the power source, the auto swing louver can not activate.

2 After completing the wiring connection of the air panel, attach the air inlet grille. Perform the attaching work in the reverse procedure of removing. Hook the swivel of the supporting string at (A) to the hole at the air panel. The air inlet grille can be attached from any 4 directions by rotating it. When multiple indoor units are installed or requested from a user, the air intake grille direction can be selected freely.

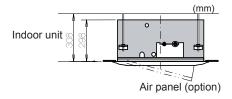
2.3 RCD - 2-way cassette

2.3.1 Accessories supplied with the unit

Check that the following accessories are supplied with the unit.

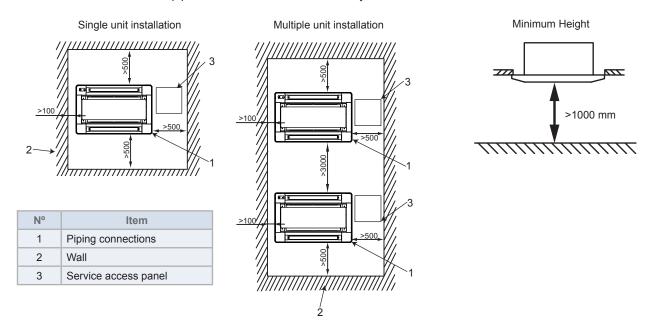
Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

Accessory	Appearance	Quantity	Purpose	
Pattern (Carton board)		1	To adjust the space of false ceiling opening and position of the unit.	
Cross recessed head screws (M6)		6	For fitting paper pattern.	
Washer with insulation material (M10)		4	For Unit Installation.	
Flat washer (M10)		4	FOI OTHE INSTAILATION.	
Drain hose		1		
Hose clamp		1	For the Drain hose connection.	
Pipe Insulation	0	1		
Pipe Insulation	0	1	For the Refrigerant pipe connection.	
Cord clamp		2	- To fix the Remote control switch and	
Cord clamp		6	refrigerant pipe insulation	
Insulation (5Tx50x200)		1	For covering wiring connection	
Insulation (5Tx270x270)		1	For covering drain connection	


Applicable air panel

Indoor unit	Applicable air panel
RCD-(0.8-3.0)	P-AP90DNA
RCD-(4.0-6.0)	P-AP160DNA

2.3.2 Unit installation


♦ Initial checks

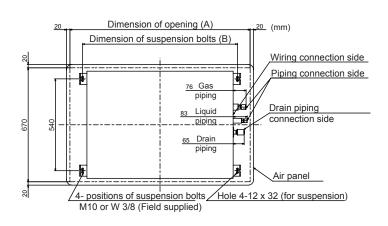
Check that there is enough space between the false ceiling and the ceiling of the room to house the unit. Its height must be less than the measured distance. Consult the corresponding chapter of the Technical Catalogue for information on the unit measurements.

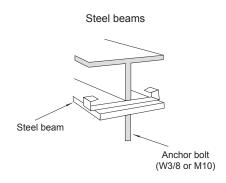
Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

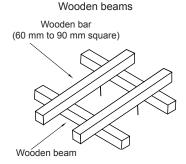
Install a service hatch near the pipe connection area and electrical junction box for installation and maintenance work.

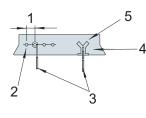
Check that the ceiling surface where the air panel is to be installed is completely horizontal.

Check that the drain hose can be installed maintaining the necessary down-slope.

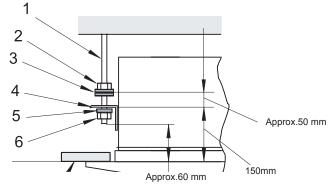

♦ Installation


Determine the final location and installation direction of the indoor unit paying attention to the space for the piping, wiring and maintenance.


Cut the area of the unit in the false ceiling and reinforce the opening made.


Install the M10 (3/8") suspension bolts depending on the type of surface:

Model	A (Opening)	B (Suspension)		
RCD-0.8				
RCD-1.0				
RCD-1.5	1060	910		
RCD-2.0	1000	910		
RCD-2.5				
RCD-3.0				
RCD-4.0				
RCD-5.0				
RCD-6.0	1620	1470		



Concrete beams

- 1 150 to 160 mm
- 2 Steel
- 3 Anchor bolt (W3/8 or M10)
- 1 Concrete
- 5 Insert (100 to 150 kg)

- 1 Suspension bolts (field-supplied)
- 2 Nut (field-supplied)
- 3 Washer with insulation accessory
- 4 Suspension bracket (attached indoor unit)
- 5 Washer (field-supplied)
- 6 Nut (field-supplied)
- 7 Ceiling

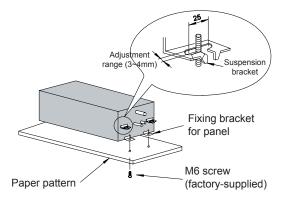
Thread on the nuts and fit the washers for all the bolts, as shown in the figure.

Fit two suspension brackets onto the nut and washer of each bolt, starting on one side.

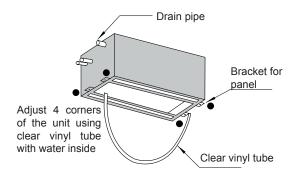
Check that the nuts and washers are correctly secured with the suspension bracket retainers and fit the brackets onto their nuts and washers on the other side.

Fit the washers with the insulation facing downwards, as shown in the figure. Bear in mind the position of the side for pipe connection before lifting the indoor unit.

Where a false ceiling is already installed, install and prepare the pipes and cables on the indoor unit before lifting it.

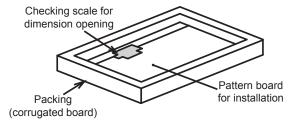

\triangle

CAUTION


- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- · Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- Request the assistance of another person to lift the unit.

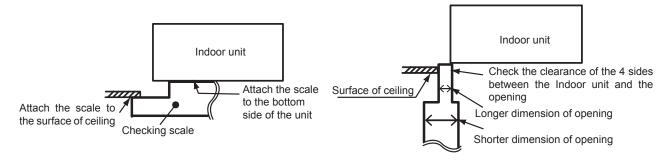
Lift the unit carefully, without exercising pressure on the drain pan.

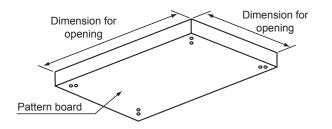
Fit the nuts, flat washers and spring washers supplied (4 of each) to secure the indoor unit.

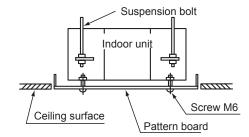


Check that the condensate discharge system in the indoor unit works correctly. To do so, check the level of the drain pan using a spirit level or a clear flexible pipe full of water. The side of the unit on which the drain hose is located must be around 5 mm lower than the other sides.

♦ Adjusting the space between the indoor unit and the opening in the false ceiling


- For installation work, the pattern board is required.
 The pattern board for installation and the checking scale are printed on the back side of the packing.
- b. Cut off the checking scale for dimension of opening from the packing.


Adjust the indoor unit to the correct position using the pattern and checking pattern for the installation.


For panelled ceilings

When installing the indoor unit to a false ceiling with an opening, check the dimension of the opening and adjust the clearance between the Indoor unit and the opening following the indications given in the next illustrations

For ceilings without panels

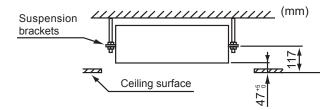
- a. When the false ceiling is not yet completed, attach the pattern board to the indoor unit with the M6 screws, as shown in the figure. And specify the location of the opening. Adjust the position of the indoor unit as the procedure "For panelled ceilings" after ceiling is completed.
- b. Tighten two nuts of each suspension bolt after the adjustment is completed. Apply thread-locking product to the suspension bolts and nuts in order to prevent them from loosening, otherwise, abnormal noise may be caused by mechanical vibrations and the indoor unit may become loose.
- c. Adjust the indoor unit to the correct position, using the checking scale.

2.3.3 Accessories supplied with the air panel: P-N23DWA / P-N46DWA

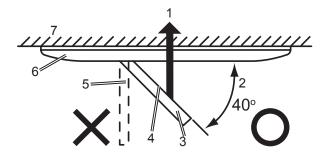
Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

Accessory	Appearance	Quantity	Purpose
Long screw (A) (M6 x 50)		4	For panel fixing
Long screw (B) (M6 x 30)	= 0	2	For panel fixing (only for air panel P-N46DNA)


2.3.4 Air panel installation

Take care while the air panel is unpacked and protect it by placing it on insulating or soft material so as not to scratch the sealant insulation.


Location of the suspension brackets

Make sure the suspension brackets on the indoor unit are approximately 117 mm in height above the false ceiling.

Remove the air inlet grille from the air panel

Nº	Part
1	Take up the grille keeping it inclined
2	Approx. 40° (correct)
3	Air inlet grille
4	Air filter
5	Wrong
6	Air panel
7	Ceiling

Open the air inlet grille until it is at an angle of approximately 40° in relation to the air panel surface.

Lift the grille while keeping it tilted.

Do not allow the grille to swing freely or the securing mechanism will break.

♦ Air panel installation

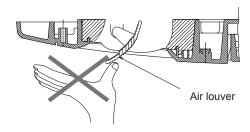
Hang the air panel from the indoor unit, attaching the cables in a U-shape from the panel to the unit hook cables.

Check that the position of the electrical junction box on the indoor unit coincides with the position of the air panel wiring outlet. Position the panel on the indoor unit and secure using the long screws supplied.

A CAUTION

- To avoid damaging the panel, the long screws securing it are fitted with stops to stop tightening at the set position.
- Where the air panel does not reach the ceiling surface or in the event of air leaks on the touching surface, readjust the installation height of the indoor unit.

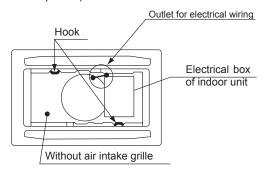
Check that there are no gaps in the touching surface between the indoor unit and the air panel. Gaps may cause air leaks or condensation.

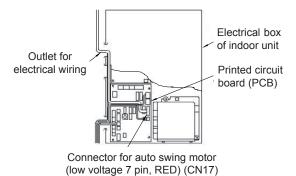

Indoor unit P-N46DWA ong screw (A) x4 (M6x50) Long screw (B) x4 (M6x60), only for P-N46DWA

Considerations following air panel installation

CAUTION

Do not move the air louver by hand. The drive mechanism may be damaged.


Electrical connection of the air panel


∠!\ CAUTION

Switch off the power supply to the unit before coupling the connectors, otherwise the automatic louver will not work.

The following connector is used with the air panel (see from the lower surface of the air panel without the air inlet grille).

Couple the connectors as indicated in the figure (view of the electrical box from above).

2.4 RPC - Ceiling

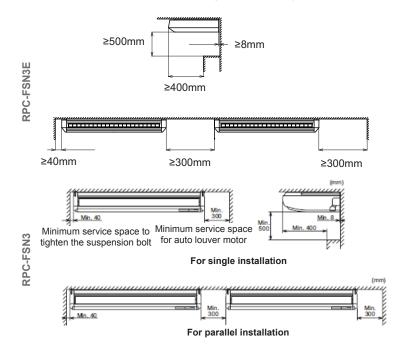
2.4.1 Accessories supplied with the unit RPC-FSN3

Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

Accessory	Appearance	Quantity	Purpose
Suspension bracket		2	For unit suspension.
Washer		8	For suspension bracket
Pipe Insulation (Large)		1	For refrigerant piping connection
Pipe Insulation (Small)		1	
Cord Clamp (Large)		6	For Fixing Insulation
Cord Clamp (Small)		1	For Fixing Plug
Drain hose		1	
Wire clamp		2	For the drain hose connection.
Insulation material (5T x 200 x 200mm)		2	For the drain hose connection.

2.4.2 Unit installation

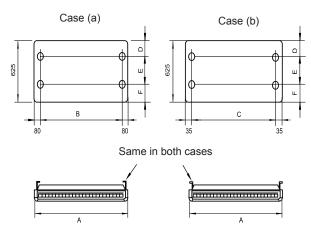

♦ Initial checks

Check that there is enough space around the unit. Consult the corresponding chapter of the Technical Catalogue for information on the unit measurements.

Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

Check that the ceiling surface where the unit is to be installed is completely horizontal.

Check that the drain hose can be installed maintaining the necessary down-slope.

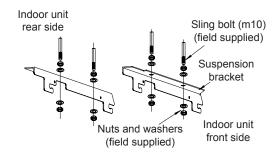

2.4.3 Suspension bracket installation RPC-FSN3E

Cut out the printed pattern on the inside of the unit's cardboard packaging and follow the instructions printed on it.

The following information is also included on the pattern:

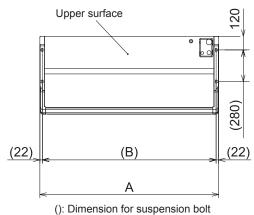
- Separation of the sling bolt for installation positions (a) and (b).
- 2 Positions of the holes for the refrigerant pipes.
- Positions of the holes for the drain pipes.

The suspension bracket can be hung in two positions:


					Unit:	mm
Model	Α	В	С	D	E	F
RPC-2.0	1314	1140	1230	150	220	255
RPC-2.5	1314	1140	1230	150	220	200
RPC-3.0	1314	1140	1230	110	280	235
RPC-4.0	1314	1140	1230	110	200	233
RPC-5.0	1574	1400	1490	110	280	235
RPC-6.0	15/4	1400	1490	110	200	235

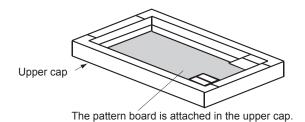
Select the suspension bracket system in line with installation requirements.

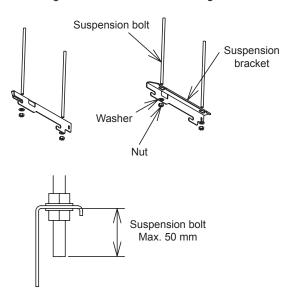
Installation position (a) is recommended for a partially hidden installation.

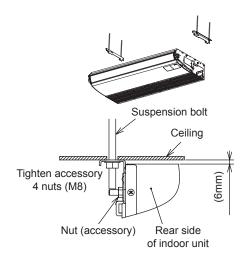

- 1 Fit the suspension brackets on the sling bolts or the anchor bolts and securing using the nuts and washers supplied.
- 2 Apply a thread-locking product to the bolts and nuts to prevent them from loosening. Otherwise, abnormal noise may be caused by mechanical vibrations and the indoor unit may become loose.

2.4.4 Suspension for FSN3 units

- 1 Determine the final location and installation direction of indoor unit with care to the space for piping and wiring.
- 2 After the position of indoor unit is determined, make holes in the ceiling to install the suspension bolts.

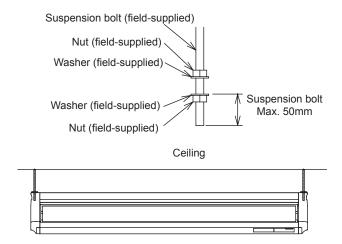

The position of suspension bolts is shown below.

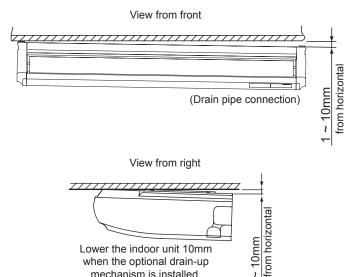

HP	Α	В
(1.5-2)	960	916
(2.5-3)	1270	1226
(4-6)	1580	1536


3 Ceiling Work: It is different depending on the building structure. Consult with an architect or an interior finish worker for more information. Do not install electric light units and the indoor unit to the same furring for ceiling. If installed, electric lights may flicker or vibrate by the indoor unit operation. When installing the indoor unit and electric lights, a furring for ceiling must be separated for each.

4 Pattern Board for Installation. The pattern board for the installation is printed on the packing. When making holes in wall and ceiling, the pattern board which hole positions for suspension, refrigerant pipe and drain pipe are printed shall be used.

- 5 Hanging indoor unit:
- · Hanging indoor unit with suspension bracket
- 6 Make holes in the ceiling for suspension bolts.
 - a. Remove the side cover.
 - b. Remove the suspension brackets attached to the indoor unit.
 - c. Fix the suspension brackets to the suspension bolts (4 portions).
 - d. Mount the indoor unit to the suspension brackets.
 - e. Tighten the 4 nuts and the fixing screw for suspension bracket.




Hanging indoor unit without suspension bracket

If there is not enough service space between the ceiling and the indoor unit, hang the indoor unit by method *Hanging indoor unit with suspension bracket*.

- 7 Determine the position to install the suspension bolt.
 - a. Fix the washer and nut to the suspension bolt.
 - b. Mount the indoor unit to the suspension bolts.

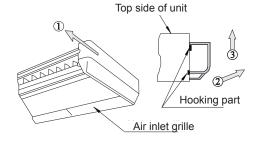
8 When the indoor unit is mounted, create down-slope toward drain pipe connection to be well drainage. The figure shows the right drain pipe connection. (Before shipment) For the left drain pipe connection, create down-slope toward

when the optional drain-up mechanism is installed.

The ceiling surface may not be horizontal. When the indoor unit is mounted, check the levelness by a level to be the drain pipe connection down-slope. If the indoor unit is mounted with incorrect suspending position, it may deform and the abnormal vibration mav occur.

- Attach the side cover and the supporting string.
- 10 Remove the protection film attached to the louver surface.
- 11 Remove the protection tape attached to the air inlet filter.

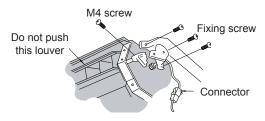
2.4.5 Indoor unit installation


To avoid damage to the resin side covers, remove them before lifting or moving the indoor unit.

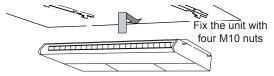
Thread the nuts and fit the washers on all the bolts.

Fit the securing bolts onto the nut and washer of each bolt, starting on one side.

Check that the nuts and washers are correctly secured with the suspension bracket retainers and fit the brackets onto their nuts and washers on the other side.


Bear in mind the position of the side for pipe connection before lifting the indoor unit.

∠!\ CAUTION


Do not move the air louver by hand. The drive mechanism may be damaged.

Suspended unit installation

Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety
regulations in the place where the installation is taking place are met.

- · Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area
- · Request the assistance of another person to lift the unit.

Hang the indoor unit on the suspension brackets, inserting the unit assembly bolts on the notches in the brackets.

Fit the nuts, flat washers and spring washers supplied to secure the indoor unit.

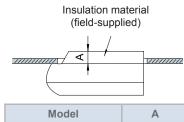

♦ Partially built-in unit installation

Where a false ceiling is already installed, install and prepare the pipes and cables on the indoor unit before lifting it.

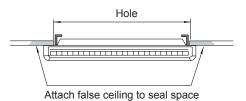
Cut the area of the unit in the false ceiling and reinforce the opening made.

A CAUTION

- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- · Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- · Request the assistance of another person to lift the unit.

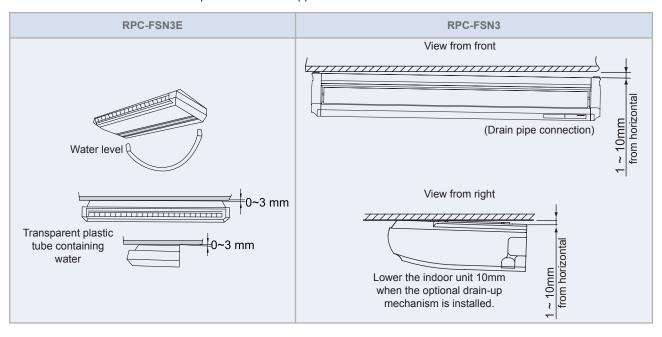

Model	Α
RPC-2.0FSN3E	1560
RPC-(2.5-4.0)FSN3E	1780
RPC-(5.0-6.0)FSN3E	2040

Hang the indoor unit on the suspension brackets, inserting the unit assembly bolts on the notches in the brackets.


Fit the nuts, flat washers and spring washers supplied to secure the indoor unit.

Insulate the top of the unit that will be hidden in the ceiling. Gaps may cause air leaks or condensation.

Fit the false ceiling panels along the unit.


Model	Α
RPC-(2.0-3.0)FSN3E	13
RPC-(4.0-6.0)FSN3E	75

◆ Continue for all installation types:

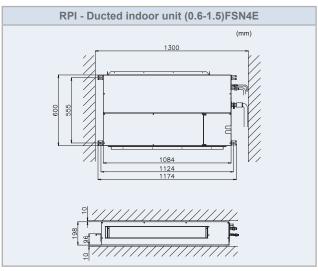
Check that the condensate discharge system in the indoor unit works correctly. To do so, check the level of the drain pan using a spirit level or a clear flexible pipe full of water. The rear of the unit where the drain hose is located must be around 3 mm lower than the front side.

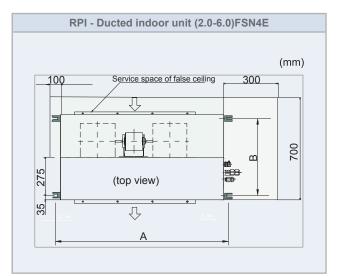
Secure the drain hose with the clamp and adhesive supplied.

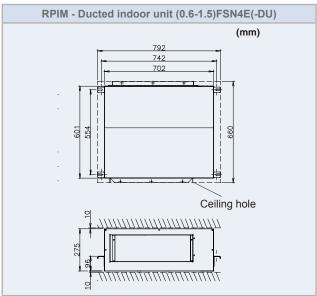
2.5 RPI(M) - Ducted indoor unit (0.6-6.0)FSN4E(-DU)

2.5.1 Accessories supplied with the unit

Check that the following accessories are supplied with the unit.

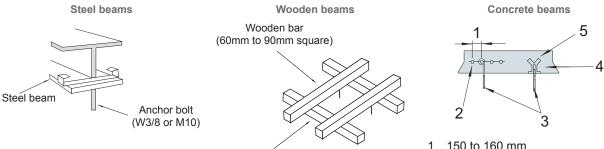

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.


Accessory	Appearance	Quantity	Purpose
Wire clamp		1	For the drain hose connection. (only for RPI-(0.8-1.5)FSN4E)
Drain hose		1	For drain connection (only for RPIM)


2.5.2 Unit installation

Initial checks

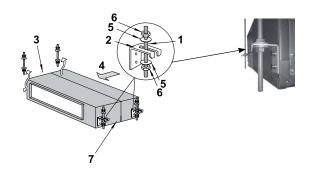
Check that there is enough space around the unit. Consult the corresponding chapter of the Technical Manual for information on the unit measurements.


Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

Check that the ceiling surface where the unit is to be installed is completely horizontal.

Check that the drain hose can be installed maintaining the necessary down-slope.

♦ Installation


Install the M10 (3/8) suspension bolts depending on the type of surface:

Wooden beam

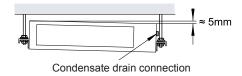
- 150 to 160 mm
- 2 Steel
- 3 Anchor bolt (W3/8 or M10)
- 4 Concrete
- Insert (100 to 150 kg)

- Suspension bolt 1
- Suspension bracket
- 3 Left side
- Inlet air 4
- 5 Washer
- 6 Nut
- Right side (service cover)

Thread on the nuts and fit the washers for all the bolts, as shown in the figure.

Fit two suspension brackets onto the nut and washer of each bolt, starting on one side.

Check that the nuts and washers are correctly secured with the suspension bracket retainers and fit the brackets onto their nuts and washers on the other side.


Bear in mind the position of the side for pipe connection before lifting the indoor unit.

CAUTION

- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- Request the assistance of another person to lift the unit.

Check that the condensate discharge system in the indoor unit works correctly. To do so, check the level of the drain pan using a spirit level or a clear flexible pipe full of water. The side of the unit on which the drain hose is located must be around 5 mm lower than the front side.

The drainage connection on the RPIM unit is located at the rear.

Once adjusted, tighten the suspension bracket nuts.

Apply a thread-locking product to the bolts and nuts to prevent them from loosening. Otherwise, abnormal noise may be caused by mechanical vibrations and the indoor unit may become loose.

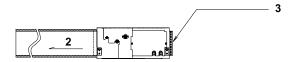
Apply protective paint to the bolts and nuts to prevent rusting.

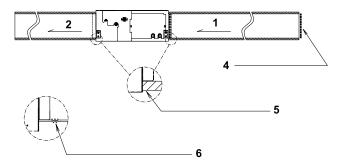
Secure the drain hose with the clamp and adhesive supplied.

CAUTION

Completely cover the unit with a sheet of plastic to protect it during installation work.

2.5.3 Air duct connection

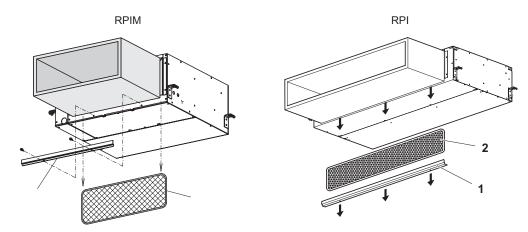



i NOTE

- Use field-supplied flexible ducts to avoid abnormal acoustic vibrations.
- RPI units are supplied with a standard air filter on the suction side. This filter is supplied for cases where no suction duct is applied (or when the duct is very short).

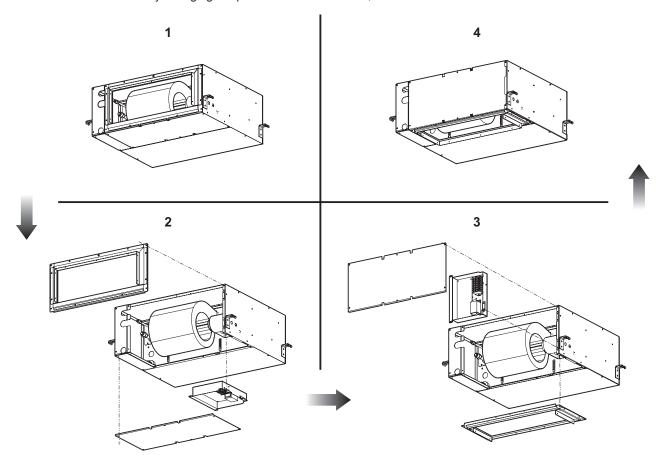
Secure the flexible air duct to the outsides of the hoses supplied with the unit.

- 1 Inlet air
- 2 Outlet air
- 3 Standard air filter (factory-supplied)
- 4 Optional air filter (field-supplied or adapted factorysupplied one)
- 5 Insulated duct (installed on the outer side of the flanges)
- 6 Flexible duct installation (rubber or textil material)



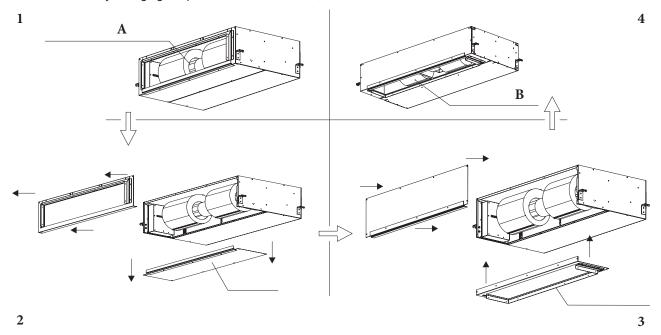
Bear in mind the following instructions depending on the installation type:

- 1 Where the suction duct is not used, keep the standard air filter.
- 2 Where the suction duct is used, fit the air filter at the suction duct inlet point, removing the standard air filter from the unit. This air filter must be field-supplied or a factory-adapted one must be used.
- 3 In the case of the RPIM unit, low static pressure is produced in the suction duct and, therefore, a short duct must be used.


2.5.4 Maintenance of the suction air filter

Simply remove the set screws from the bar -1- (RPIM units: 2 screws, RPI units: 3 screws) and remove it to pull the filter downwards.

Change in the air suction direction RPIM-(0.6-1.5)FSN4E (-DU)


Change in position of the air inlet on RPIM-(0.6-1.5)FSN4E(-DU) models: the position of the air inlet and, therefore, its direction can be modified by changing the position of the rear cover, as shown in the illustrations.

- 1 Initial position of the air inlet (factory-supplied).
- 2 Remove the front and rear covers and the electrical box from the unit.
- 3 Switch the position of the front and rear covers. Change the position of the electrical box on the unit as indicated in the illustration.
- 4 Final position of the air inlet.

RPI-(2.0-6.0)FSN4E

Change in position of the air inlet on RPI-(2.0-6.0)FSN4E models: the position of the air inlet and, therefore, its direction can be modified by changing the position of the rear cover, as shown in the illustrations.

- Initial position -A- of the air inlet (factory-supplied).
- Air inlet and bottom cover away from the unit.
- Interchange air inlet and cover position.
- Final position -B- of the air inlet.

2.6 RPI - Ducted indoor unit (8/10)FSN3E(-f)

2.6.1 Accessories supplied with the unit

Check that the following accessories are supplied with the unit.

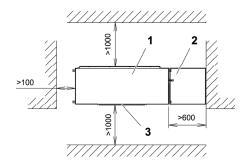
Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

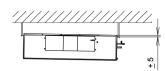
Accessory	Appearance	Quantity	Purpose
Piping adapter (Ø19.05 x Ø25.4) (For 8 HP only)			
Piping adapter (Ø22.2 x Ø25.4) (For 10 HP only)		1	Reducer boss for refrigerant piping on the indoor unit
Piping adapter (Ø9.52 x Ø12.7) (For 10 HP only)			

2.6.2 Unit installation

♦ Initial checks

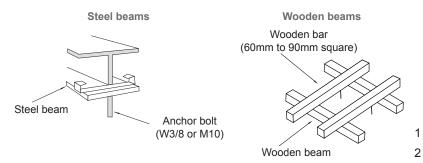
RPI - Ducted indoor unit (8.0/10.0)FSN3E(-f)

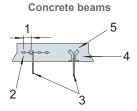

- 1 Rear.
- 2 Unit inspection and maintenance access.
- 3 Front side.


Check that there is enough space around the unit. Consult the corresponding chapter of the Technical Catalogue for information on the unit measurements.

Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

Check that the ceiling surface where the unit is to be installed is completely horizontal.

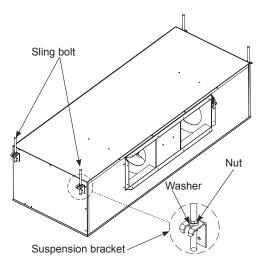

Check that the drain hose can be installed maintaining the necessary down-slope.



♦ Installation

Install the M10 (3/8) suspension bolts depending on the type of surface:

- 150 to 160 mm
- Steel
- Anchor bolt (W3/8 or M10)
- Concrete
- Insert (100 to 150 kg)


Thread the suspension bracket onto the nut and washer of each bolt, starting on one side.

Check that the nut and washer are correctly secured with the suspension bracket retainers.

Attach the top of the suspension bracket with another nut and washer.

CAUTION

- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- Request the assistance of another person to lift the unit.

Lift the unit carefully.

Check that the condensate discharge system in the indoor unit works correctly. To do so, check the level of the drain pan using a spirit level or a clear flexible pipe full of water. The side of the unit on which the drain hose is located must be around 5 mm lower than the front side.

Once adjusted, tighten the suspension bracket nuts.

Apply a thread-locking product to the bolts and nuts to prevent them from loosening. Otherwise, abnormal noise may be caused by mechanical vibrations and the indoor unit may become loose.

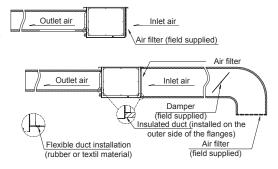
Apply protective paint to the bolts and nuts to prevent rusting.

Secure the drain hose with the clamp and adhesive supplied.

!\CAUTION

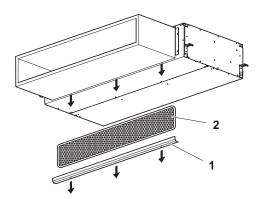
Completely cover the unit with a sheet of plastic to protect it during installation work.

2.6.3 Air duct connection



- Use field-supplied flexible ducts to avoid abnormal acoustic vibrations.
- RPI units are supplied with a standard air filter on the suction side. This filter is supplied for cases where no suction duct is applied (or when the duct is very short).

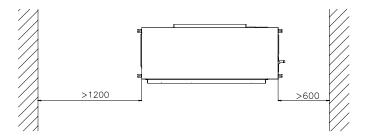
Secure the flexible air duct to the outsides of the hoses supplied with the unit.


Bear in mind the following instructions depending on the installation type:

- 1 Where the suction duct is not used, keep the standard air filter.
- 2 Where the suction duct is used, fit the air filter at the suction duct inlet point, removing the standard air filter from the unit. This air filter must be field-supplied or a factory-adapted one must be used.

2.6.4 Maintenance of the suction air filter

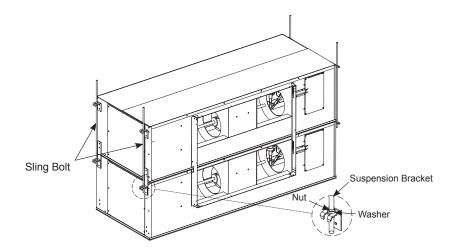
Simply remove the set screws from the bar -1- (4 screws) and remove it to pull the filter downwards.


2.7 RPI - Ducted indoor unit (16/20)FSN3PE(-f)

2.7.1 Unit installation

♦ Initial checks

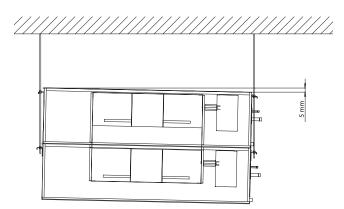
Install the indoor unit with a proper clearance around it paying careful attention of installation direction for the piping, wiring and maintenance working space, as shown below.


(mm)

Unit's hanging

Install the sling bolts, 4xM10 or greater are recommended, and suspend the indoor unit using the following steps:

- 1 Hook the suspension bracket of the lower unit to the nut and washer of each sling bolt, as shown, starting from one side.
- 2 After checking that the nut and washer has been correctly fixed by the retainers of the suspension bracket, hook the top side of the suspension bracket (of the lower unit) by using another nut and washer as shown below.
- 3 Hook the upper unit brackets for balancing the total weight of the whole unit by tightening the nuts and washers of its hooks.



It is mandatory to hang the unit by the 8 hooks for distributing the unit total weight on its suspending brackets correctly.

Drain Pan Level

Front View

- Check to ensure that the foundation is flat, taking into account the maximum foundation gradient.
- The unit should be installed so that the Drain Pan side of the unit is slightly (approximately 5 mm) lower than the opposite side, in order to avoid the incorrect position of the drain discharge.
- Tighten the nuts of the suspension bolts with the suspension brackets after adjustment is completed.
- Special plastic paint must be applied to the bolts and nuts in order to prevent them from loosening.
- Fasten the tubing to the drain hose with an adhesive and the factory-supplied clamp. The drain piping must be performed with a down-slope pitch of 1/25 to 1/100.

i | NOTE

Keep the unit as well as relevant equipment covered with the vinyl cover during installation work.

Air duct connection

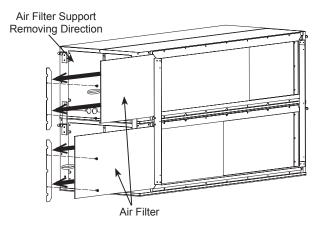
Fix the Flexible Air Duct to External Faces of unit flanges (the unit is equipped with factory supply flanges for this purpose).

It is recommended to use a Flexible field supply Duct portion in order to avoid any abnormal sound vibration.

RPI-units are supplied with standard Air Filter at the suction side. This filter is provided for the cases in which no Suction Duct is applied (or it is very short).

It is recommended the following indications depending on the installation.

- Keep the standard Air Filter in case of no Suction Duct is applied (fig.1).
- In case of applying Suction Duct, it is recommended to apply Air Filter at the inlet point of Suction Duct, removing the standard Air Filter of the unit (fig. 2).


Fig.1 Inlet Air Outlet Air Air Filter Fig.2 (Factory supplied) Inlet Air Outlet Air Insulated Duct (Installed on the Flexible Duct Installation Air Filter outer side of the (Factory-supplied or (Rubber or Textil Material) flanges) adapted factory one)

Maintenance of the suction air filter

Filter maintenance could be performed from right or left side of the unit.

Remove filter support (x2 screws / each support) and pull out the filter from the handle.

In those installations where the servicing space is narrow, the filter could be bent (in three pieces) when pulling it out.

2.8 RPK - FSN(H)3M Wall mounted

2.8.1 Accessories supplied with the unit

Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

Accessory		Q'ty			Durmood
		0.8-1.0	1.5	2.0-4.0	Purpose
Suspension bracket		1	1	1	For mounting indoor unit
Screw (Ø4 x 25L)	(t)	6		8	For fiving evaponaian brookst
Screw (Ø4 x 40L)	(1)	2		4	For fixing suspension bracket
Fixing plate		-		1	For fixing piping
Thermal Insulation pipe		1		1	For insulating refrigerant piping

2.8.2 Unit installation

♦ Initial checks

Check that there is enough space around the unit. Consult the corresponding chapter of the Technical Manual for information on the unit measurements.

Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

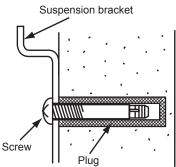
		Unit: mm
Model	а	b
RPK-(0.6-1.5)FSN(H)3M	150	100
RPK-(2.0-4.0)FSN3M	100	200

Bear in mind the air distribution from the unit to the room and select a suitable place for an even air temperature in the room.

Check that the drain hose can be installed maintaining the necessary down-slope.

♦ Installation

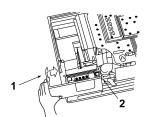
- Where the mounting bracket must be installed on a wooden or concrete wall, make sure it is resistant enough to withstand a weight of 200 kg.
- Do not fit the mounting bracket to a pillar.
- The place where the indoor unit is to be installed must be a flat surface with enough space to fully house the unit. The weight of the unit must be evenly distributed over the surface.


RPK-(0.6-1.5)FSN(H)3M RPK-(2.0-4.0)FSN3M Fixing screw for suspension bracket Fixing screw for Suspension bracket suspension bracket Suspension bracket Hole for pipings Q_b and wirings Hole for pipings and wirings Fix the suspension bracket with more than 4 fixing screws. Fix the suspension bracket with more than 5 fixing screws.

Check that the mounting bracket is installed so that the drain pipe side is slightly lower (around 3 mm) than the other side for easier condensate discharge.

The drain hose connection can be made on the right or the left of the unit.

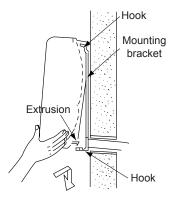
Installation on a concrete wall or a concrete block: fit the mounting bracket to the wall using anchor bolts, as shown in the figure.


	Q'ty		
Plug size	RPK-(0.6-1.5)FSN(H)3M	RPK-(2.0-4.0)FSN3M	
M4-M5	4	5	

Remove the bottom cover by pressing -1- and -2-.

A CAUTION

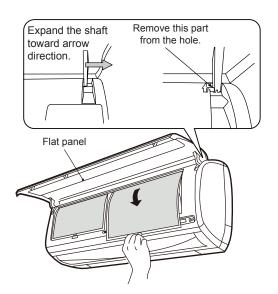
- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- Request the assistance of another person to lift the unit.



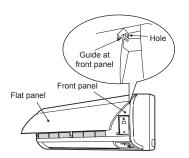
Lift the unit carefully.

Hang the indoor unit on the mounting bracket, keeping it vertical. Secure the bottom cover and the mounting bracket with

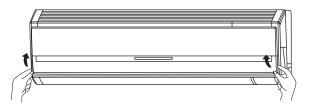
Make sure the unit is hanging correctly on the mounting bracket. Otherwise, the bracket could fall.


◆ Removal of the front panel for RPK-(0.6-1.5)FSN(H)3M

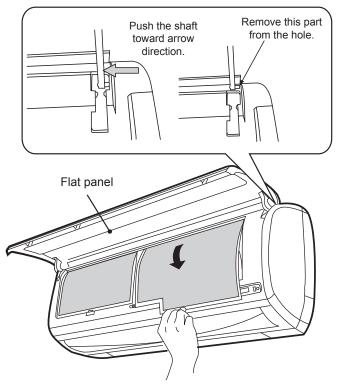
Hold both sides of flat panel and open it fully.


Lift up the air filter, detach the catches from the indoor unit and remove the air filter downward.

After the right arm shaft is expanded outward and the shafts are removed from the front panel, pull the flat panel frontward while the right arm shaft is slightly expanded outward.


Attaching flat panel for RPK-(0.6-1.5)FSN(H)3M

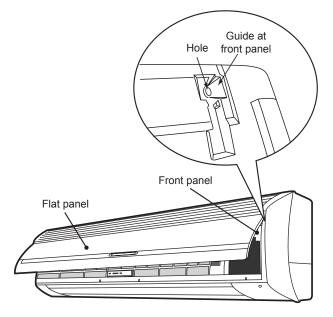
Insert completely the left and right arm shafts of flat panel into the holes along the guide at the front panel. After the flat panel is attached completely, insert the catches for air filter to fix.


◆ Removal of the front panel for RPK-(2.0-4.0)FSN3M

Hold both sides of flat panel and open it fully.

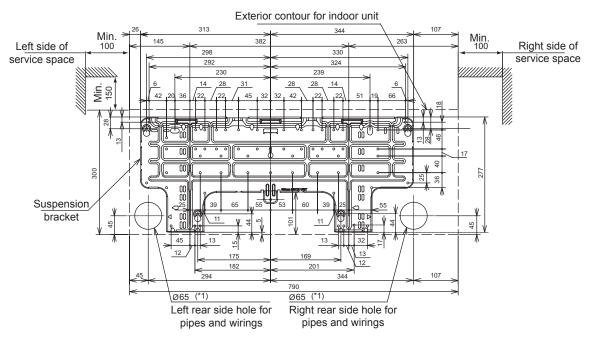
Lift up the air filter, detach the catches from the indoor unit and remove the air filter downward.

After the right arm shaft is pushed inward and the shafts are removed from the front panel, pull the flat panel frontward while the right arm shaft is slightly pushed inward.



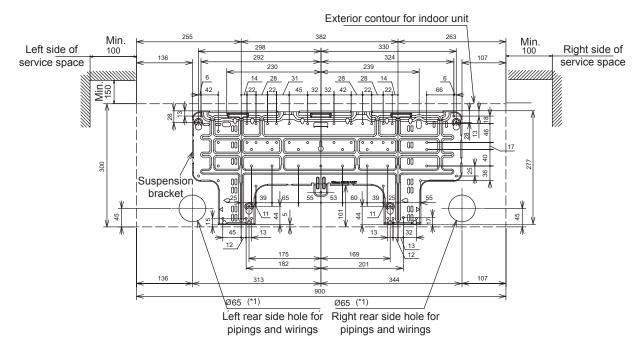
Attaching flat panel for RPK-(2.0-4.0)FSN3M

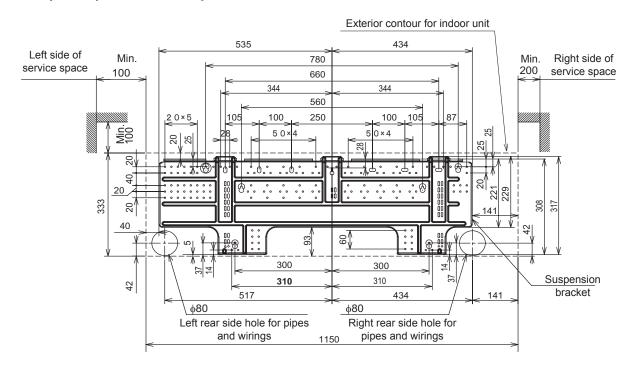
Insert completely the left and right arm shafts of flat panel into the holes along the guide at the front panel. After the flat panel is attached completely, insert the catches for air filter to fix.


! CAUTION

When removing front panel, do not apply an excessive force by hitting, etc. It may break the unit body.

2.8.3 Mounting bracket dimensions


◆ RPK-(0.6-1.5)FSN(H)3M unit suspension bracket


For RPK-(0.6-1.0)FSNH3M units it is recommended to connect the piping at the right rear side of the body to avoid the sound from the refrigerant running through.

◆ RPK-1.5FSN(H)3M unit suspension bracket

For RPK-1.5FSNH3M it is recommended to connect the piping at the right rear side of the body to avoid the sound from the refrigerant running through.

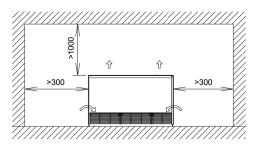
♦ RPK-(2.0-4.0)FSN3M unit suspension bracket

2.9 RPF - Floor type, RPFI - Floor concealed type

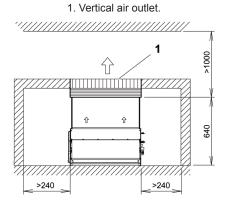
2.9.1 Accessories supplied with the unit

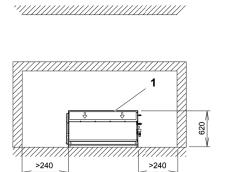
Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.


Accessory	Appearance	Quantity	Purpose
Installation adjustment screw		4	To adjust the flat level of the unit.
Philips head screw	—	2	For PC-ARFPE

2.9.2 Unit installation

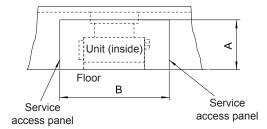

♦ Initial checks


Check that there is enough space around the unit. Consult the corresponding chapter of the Technical Catalogue for information on the unit measurements.

RPF - Floor type (1.0-2.5)FSN2E

RPFI - Floor concealed type (1.0-2.5)FSN2E

1. Horizontal air outlet.


Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

Check that the floor surface where the unit is to be installed is completely horizontal.

Bear in mind the air distribution from the unit to the room and select a suitable place for an even air temperature in the room.

Install a service hatch near the pipe connection area and electrical junction box for installation and maintenance work.

Model	A (mm)		B (mm)	
Wiodei	RPF	RPFI	RPF	RPFI
RPF(I)-1.0FSN2E	630	620	1479	1359
RPF(I)-1.5FSN2E				
RPF(I)-2.0FSN2E		620	4700	4000
RPF(I)-2.5FSN2E			1729	1609

Check that the drain hose can be installed maintaining the necessary down-slope.

♦ Installation

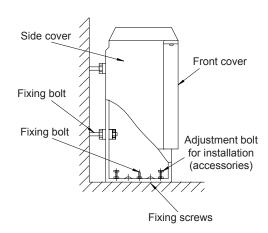
The place where the indoor unit is to be installed must be a flat surface with enough space to fully house the unit. The weight of the unit must be evenly distributed over the surface.

Handle and position the unit carefully.

Check that the attachment position (in mm) of the unit is as indicated in the figure.

Model	Α	В	С	D	Е	F	G												
RPF-1.0FSN2E	1045	754	047	732	228	140	360												
RPF-1.5FSN2E	1170	879	217	857	228	140	630												
RPFI-1.5FSN2E	988	879	66	857	77	138	620												
RPF-2.0FSN2E	1420	1129	1129	1129	1129	11 110	4407	228	140	620									
RPF-2.5FSN2E	1420					1129	1129	1129	1129	1129	1129	1129	1129	1129	1129	1129	1129	1129	1129
RPFI-2.0FSN2E	1004	4420	4400	44	44 4407	1407 50	400	000											
RPFI-2.5FSN2E	1234	1129	11	1107	53	139	620												

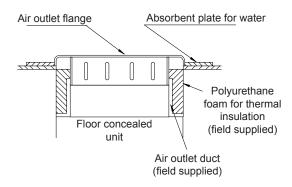
Adjust the horizontal level of the unit by loosening or tightening the unit installation bolts.


Check that the condensate discharge system in the unit works correctly. To do so, check the level of the drain pan using a spirit level. The side of the unit on which the drain hose is located must be around 3 mm lower than the opposite side.

Secure the base plate and the rear plate of the unit using field-supplied bolts and screws.

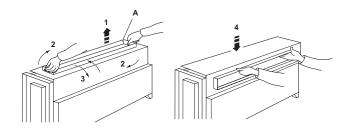
RPFI units: remove the electrical wiring box when fitting the installation bolts.

RPF units: carry out the above operation after removing the front and side covers of the unit.

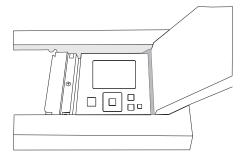


RPFI unit: install the optional air outlet grille as indicated in the figure.

- Condensation may be accumulated if the unit is installed in a very damp place. Install a porous, water-absorbent plastic plate to absorb and retain water around the grille.
- The optional air outlet grille of the RPFI unit cannot be used in very damp places, such as a kitchen or bathroom, as condensation may settle on its surface.


RPFI units: Install an additional access cover attached with screws so as not to touch the fan duct directly.

2.9.3 Change in the air outlet direction (RPFI units)


The air outlet direction of the unit can be modified to adapt it to installation requirements, as shown in the illustration.

- 1 Lift air outlet -A-.
- 2 Turn the air outlet on itself until it is opposite its initial position.
- 3 Tilt the air outlet so that the nozzle is facing forwards.
- 4 Refit air outlet -A-.

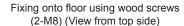
2.9.4 RPF: Optional PC-ARFPE remote control location

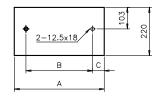
It is possible to install the PC-ARFPE remote control below the plastic cover, as shown in the figure.

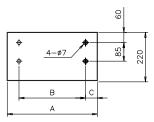
2.10 KPI energy and KPI active unit

2.10.1 Accessories supplied with the unit

Check that the following accessories are supplied with the unit.

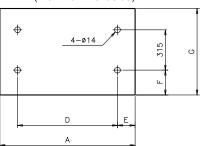


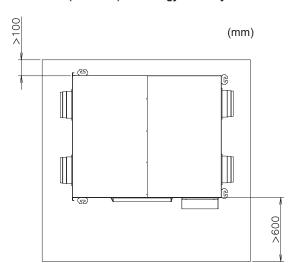

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.


Accesory	Appearance	Quantity
Duct adapter		4
Screw		24
Washer		8
Nut		12
Vibration Abs.Rubber		4
Rubber duct joint		4

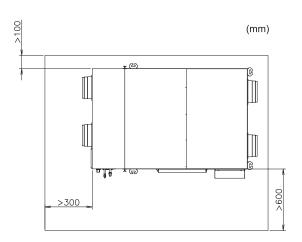
2.10.2 Unit installation

♦ Initial checks




Fixing onto floor using wood screws (4-M5) (View from top side)

Fixing onto wall (View from front side)



KPI-(252-2002)E4E energy recovery unit

KPI-(502-1002)X4E active unit

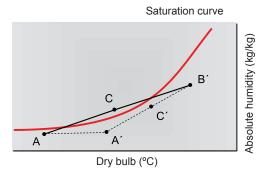
Check that there is enough space around the unit. Consult the corresponding chapter of the Technical Catalogue for information on the unit measurements.

Before starting installation, plan the direction of the pipes and wiring required. Also bear in mind that there must be enough space around the unit for installation and maintenance.

Check that the ceiling surface where the unit is to be installed is completely horizontal.

Installation

Avoid obstacles that could block the air inlet or outlet flow.


Choose a position in which the unit does not take in outdoor air mixed with combustion or exhaust fumes.

The unit must not be covered in snow.

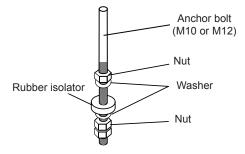
Do not use the unit in the winter when the weather conditions may lead to the formation of condensation in the heat exchanger.

- The formation of condensation arises if the line connecting the outdoor and indoor temperature points and the conditions of humidity cross the saturation curve in the psychrometric chart.
- Raising the temperature at point A (outdoor air) to point A' gives improved conditions in which the line connecting the outdoor and indoor temperature points and the conditions of humidity do not cross the saturation curve. In this case, the total heat exchanger can be used.

The limit for ambient conditions in which the total heat exchanger is used is shown in the table below as an example, at an outdoor air temperature of 0°C, -5°C and -10°C and an indoor air temperature of 30°C. Where the indoor or outdoor air humidity is higher, condensation may accumulate and flow outside the unit.

The method for raising the temperature of A (outdoor temperature) must be determined according to current law in the place where the unit is installed.

Outdoor Air Temperature (DB)	Indoor Air Temperature (DB)	Indoor Air Relative Humidity (%)	Indoor Air Absolute Humidity (kg/kg)
0°C	30°C	50	0.0133
-5°C	30°C	36	0.0095
-5°C	25°C	45	0.0089

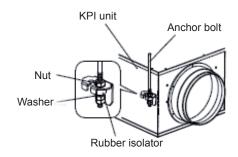

Prepare the sling bolts.

Fit the anchor bolts on the suspension bracket and adjust to ensure the unit is installed horizontally.

Thread on the nuts and fit the washers for all the bolts, as shown in the figure.

Fit two suspension brackets onto the nut and washer of each bolt, starting on one side.

Check that the nuts and washers are correctly secured with the suspension bracket retainers and fit the brackets onto their nuts and washers on the other side.

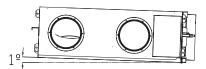


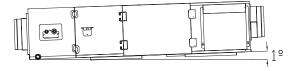
A CAUTION

The unit control box is fragile. Do not apply force to the control box.

Where the sling bolts are too short, fit the suspension bracket in an alternative position.

- 1 Remove the bolts from the upper installation position.
- 2 Remove the suspension brackets and fit in a higher installation position.
- 3 Tighten the bolts in the holes from which the suspension brackets have been removed to avoid air leaks.


A CAUTION


- Before lifting the unit, prepare any necessary means (ladders, scaffolding, elevator platform, etc.) and check that the current safety regulations in the place where the installation is taking place are met.
- Check that the lifting work can be carried out without the risk of injuries to you or others in the surrounding area.
- · Request the assistance of another person to lift the unit.

Lift the unit carefully.

For KPI-(502-1002)X4E

The unit should be installed so that one side of the unit is slightly 1° for KPI-(502-1002)X4E lower than the other side, in order to avoid the incorrect position of the drain discharge.

Apply a thread-locking product to the bolts and nuts to prevent them from loosening. Otherwise, abnormal noise may be caused by mechanical vibrations and the indoor unit may become loose.

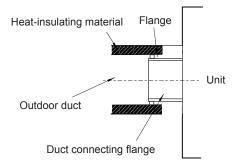
Apply protective paint to the bolts and nuts to prevent rusting.

Completely cover the unit with a sheet of plastic to protect it during installation work.

2.10.3 Duct connection

- Use field-supplied flexible ducts to avoid abnormal acoustic vibrations.
- The unit is fitted with a pre-drilled hose to connect the supply duct.

Check that there is no dust, sawdust or other foreign particles inside the ducts before connecting them.

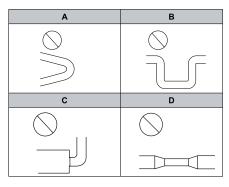

When connecting the ducts, do not touch the damper plate located behind the main unit.

Position and secure the ducts in the connection hoses and apply aluminium tape (field-supplied) around the connection to avoid air leaks. The duct connection hoses have a previously installed sealing system.

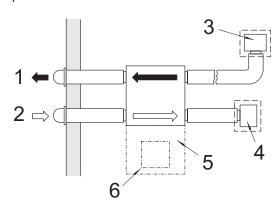
Suspend the ducts from the ceiling so that the weight does not rest on the unit.

Cover the two outdoor ducts with suitable heat insulation material to prevent the formation of condensation.

Secure the flexible air duct to the outsides of the hoses supplied with the unit.

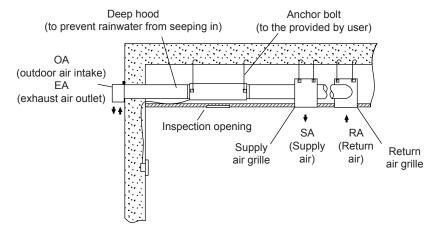

Do not install ducts along complex layouts or sharp bends. The volume of air may be reduced, leading to abnormal circulation noises. Particularly avoid the following situations:

A: extremely tight bends.


B: multiple bends.

C: bends next to the outlet.

D: extreme reduction of the diameter of the connected ducts.



Example of installation:

Nº	Name	
1	EA (exhaust air outlet)	
2	OA (outside air intake)	
3	Return air grille	
4	Supply air grille	
5	Service space	
6	Service access panel	

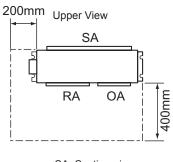
Example of installation:

2.11 Econofresh Kit

2.11.1 Accessories supplied with the unit

Check to ensure that the following accessories are packed with the unit.

If any of these accessories are not packed with the unit, contact your contractor.


Acce	Qty	
Cord AS		1
Outdoor Thermistor (8m)		1
Screw (for RPI and Econofresh flanges connection)	(†==== (†====	12

2.11.2 Unit installation

♦ Initial checks

Before Econofresh kit installation refer to indoor unit's Installation and Operation Manual.

Install the indoor unit with a proper clearance around it for operation and maintenance working space, as shown below.

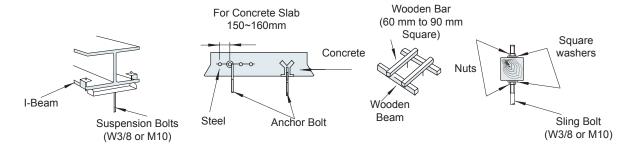
SA: Suction air RA: Return air OA: Outlet air

Do not install the indoor unit in a flammable environment to avoid fire or an explosion.

⚠ CAUTION

- Check to ensure that the ceiling is strong enough.
- Do not install the unit outdoors .
- If installed outdoors, an electric hazard or electric leakage will occur.

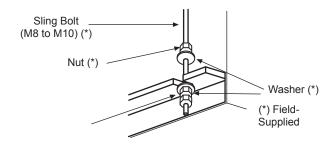
2.11.3 Mounting the unit


♦ Step 1

Select a final location and installation direction of the unit paying careful attention to the space for wiring and maintenance.

♦ Step 2

Mount suspension bolts, as shown on the figure beside.


Installation dimensions are shown on Dimensional Drawing.

Step 3

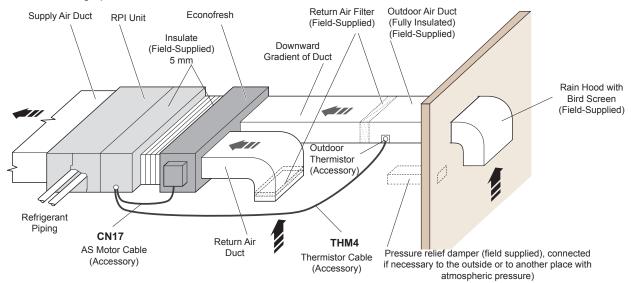
Hanging the unit.

- Hang the suspension bracket on the anchor bolts and adjust in such a way that the unit is installed horizontally
- Tighten up securely using double nuts in order to prevent looseness.

A CAUTION

When suspending the main unit from the ceiling, do not handle it in such a way that a force will be applied to the control box.

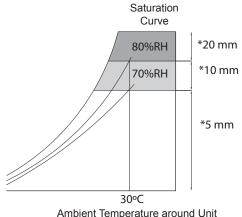
2.11.4 Example of installation


1 Ducting Connection

Pre-drilled duct flanges are provided at the supply, return and outdoor air intake connections. It is recommended that a flexible duct connection be installed to minimize sound and vibration transmission.

2 Insulation

All ducts should be insulated


- Especially the outdoor air duct, through which the cold outdoor air flows in, must be sufficiently insulated.
- The lowest temperature of the entering outdoor air flowing through the outdoor air duct is the lowest temperature for heating operation at the installation site.

In the case that the unit is used under the following condition, perform additional insulation (*) or prepare a drain pan underneath the unit.

Ducting arrangement must comply with local regulations.

Ambient Temperature around Unit

For further information regarding this product, refer to the installation and operation manual.

2.12 DX-Interface

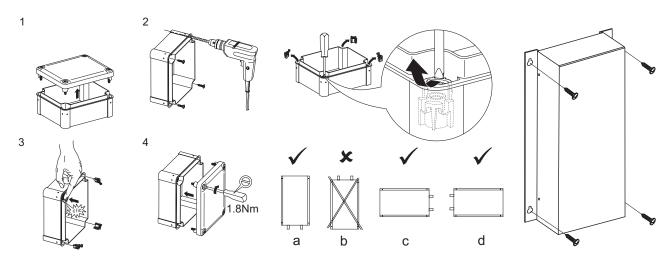
2.12.1 Accessories supplied with the unit

Check that the following accessories are supplied with the unit.

Please contact your HITACHI distributor if any of the accessories has not been supplied with the unit.

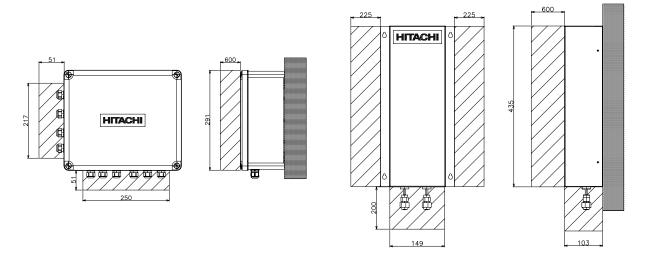
Accessory	Appearance	Qty	Purpose
Control box	0000	1	System control box
Expansion valve box	0	1	Expansion valve for refrigerant cycle control
Thermistor	P	4	Temperature sensing: inlet air (blue) outlet air (red) gas line (yellow) liquid line (black)
Thermistor extension (5 m)		4	To extend thermistor length: Inlet air (blue) outlet air (red) gas line (yellow) liquid line (black)
Installation Manual and Declaration of conformity		1	Instructions and important notice
Control box fixing accessory		4	Control box cover lock
Harness jumper	21	1	Motor alarm connection jumper

2.12.2 Unit installation


- The installation of a specific remote controller is necessary during the installation commissioning. Once the installation commissioning is finished, this remote controller can be removed if the pin 7 is switched to ON position. In this case, pay attention to all the setting details related with the remote controller because after remove it, they cannot be changed.
- Do not install the DX-Interface where electromagnetic wave is directly radiated to the control box or expansion valve
- Install a noise filter when noise is emitted from power supply.
- Do not install the DX-Interface where generation, flowing, staying or leakage of flammable gas may occur.
- When the false ceiling contains high humidity, dew condensation water may occur on the outer surface of the expansion valve box. Therefore utilize the insulation on the outer surface of the expansion valve box.

Installation location

- 1 Installation methods are selectable according to the dimension of the false ceiling.
- 2 Keep the distance between the unit or device with heat exchanger and the expansion valve box for the piping length up to 5m. Also the elevation difference between the unit or device with heat exchanger and the expansion valve box must be no more than 2m.
- 3 Check the ceiling slab is strong enough. If the ceiling slab is too weak to support the weight of the expansion valve box, noise and vibration may occur.


- 4 Secure proper space around the control box and expansion valve box for operation and maintenance work. Also a service access door should be prepared in order to remove the DX-interface without getting rid of the ceiling plate.
- 5 Select a suitable and convenient location for the refrigerant piping connection.
- 6 Do not install the DX-Interface in a kitchen where vapour or mist flows. Dew condensation water may occur on the expansion valve box while cooling operation. In this case, use the insulation.
- 7 Do not install the DX-Interface in a organic solvent (thinner or benzine) environment. Synthetic resin parts may dissolve.
- 8 Do not install the DX-Interface where generation, flowing or staying of flammable gas may occur.
- 9 The sound of refrigerant running through from the expansion valve box may be heard. Therefore install the expansion valve box where the sound will not leak such as in the false ceiling of a hall way.
- 10 Use ceiling material with sound-proof such as plaster board.

2.12.3 Mounting method

In case of installation positions "c" and "d", make sure to insulate the copper pipes inlet on the expansion valve box cover to avoid any liquid filtration and accumulation.

Minimum sizes (mm).

2.12.4 Thermistor installation

♦ Liquid and gas pipes thermistor

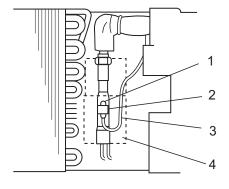
Two type thermistors are supplied inside the control box. The purpose and identification of each one is as follow:

Item	PCB socket / Thermistor connector colour	PCB socket number	Thermistor length (mm)
Liquid pipe thermistor	Black	THM 3	650
Gas pipe thermistor	Yellow	THM 5	600

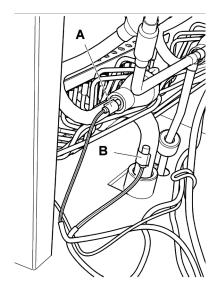
⚠ CAUTION

In case that the thermistors supplied with the Dx-Interface are not long enough, please make sure that the length extension is properly done avoiding the sensing distortion and that the joint is properly insulated to avoid any electrical failure.

When fitting the thermistors, remember that they must be secured correctly by the special clamp, ensuring the perfect contact between the pipe and thermistor. Cover it completely with insulation, like cork tape or pipe insulation, depending on the location. Replace them if damaged during maintenance work.


Thermistor installation example

1	Liquid / gas pipe thermistor (factory supplied)
2	Thermistor holder (field supplied)
3	Thermistor lead wire (field supplied)
4	Insulation (field supplied)


⚠ CAUTION

The thermistor must be installed properly in order to avoid water onto the thermistor.

Typical installation location

Α	Liquid pipe thermistor	Must be installed in the coldest liquid line point in the heat exchanger (prior the distributor).	
В	Gas pipe thermistor	Must be installed as close as possible to the heat exchanger refrigerant outlet.	

♦ Air thermistor

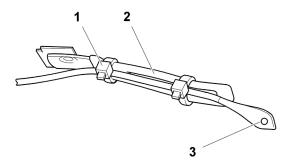
Two air thermistors are supplied inside the control box. The purpose and identification of each one is as follow:

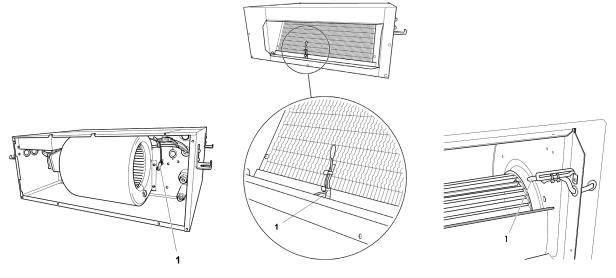
ltem	PCB socket / Thermistor connector colour	PCB socket number	Thermistor length (mm)
Inlet air thermistor Blue		THM 1	1200
Outlet air thermistor	Red	THM 2	1200

A CAUTION

In case that the thermistors supplied with the Dx-Interface are not long enough, please make sure that the length extension is properly done avoiding the sensing distortion and that the joint is properly insulated to avoid any electrical failure.

When fitting the air thermistor, remember that they must be secure correctly, in an adequate place to avoid external influences, like ambient conditions, and where the air temperature is significant.


◆ Cable clamp example


⚠ CAUTION

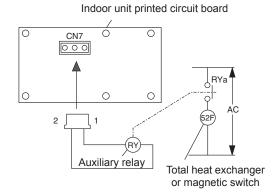
The thermistor must be installed properly in order to avoid water onto the thermistor.

1	Tie (field supplied)
2	Cable clamp (field supplied)
3	Thermistor (supplied)

Typical installation

Thermistor.

2.13 Optional accessories


2.13.1 Outdoor air inlet

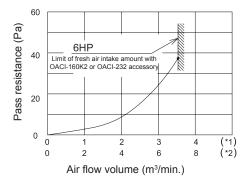
Outdoor air inlet duct connection position

This kit can not supply the fresh air by itself. Therefore, connect the duct and supply the fresh air from the total heat exchanger or the duct fan.

When connecting this kit to the total heat exchanger or the duct fan, make an interlock to the fan of the indoor unit. The example is shown below.

Use a cable with a three-terminal connector (PCC-1A) for the CN7 connector on the indoor PCB.

Remarks for OACI-160K2, OACI-232 and OACI-232E

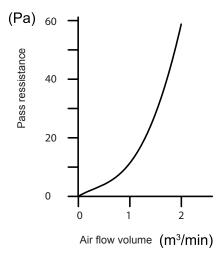

The standard maximum air volume of fresh air intake when using the outdoor air inlet duct references OACI-160K2 or OACI-232 or OACI-232E combined with a total heat exchanger or the duct fan, is within 20% of the rated air volume of the indoor unit (at "HIGH" mode). If the amount of incoming outdoor air exceeds this value, condensation may be produced on the inner surface of the drain pan (air inlet hole) and, in some cases, dew may form.

In the case without total heat exchanger, use the fresh air intake kit within the range which dewing does not occur at this kit, duct and inside the indoor unit.

With or without the total heat exchanger, follow the countermeasure according to the temperature difference between the supply air from the room air and the outside air as shown in the table below.

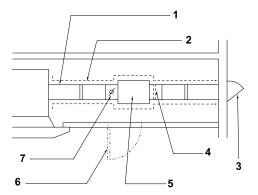
Temperature difference between supply air from room air and outside air	Countermeasure
Below 10 deg.	No countermeasure required
Below 15 deg.	Perform insulation
Over 15 deg.	Use with total heat exchanger or Operation is not permissible.

The outdoor air inlet duct references OACI-160K2, OACI-232 or OACI-232E resistance data, is indicated in the following figure. Use as a guide for fan selection.



- This chart shows the value when the kit OACI-160K2,OACI-232 or OACI-232E is used by itself. In the case that the kit is installed with the T-tube connecting kit, refer the value to its chart .
- (*1) When connecting OACI-160K2, OACI-232 or OACI-232E with1 duct adapter.
- (*2) When connecting OACI-160K2, OACI-232 or OACI-232E with 2 duct adapter.

Remarks for PD-75A


Indoor unit HP	Maximum capacity of fresh air intake (m³/min)
(1.0-2.5) HP	1.0
(3.0-6.0) HP	2.0

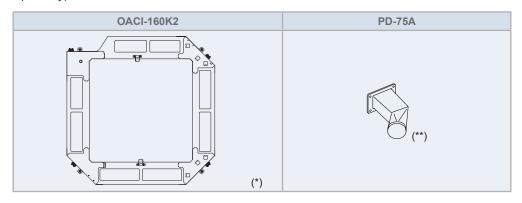
The outdoor air inlet duct reference PD-75A resistance data, is indicated in the following figure. Use as a guide for fan selection.

♦ Example of the duct fan installation

Nº	Part
1	Duct (made of non-combustible materials only)
2	Thermal insulation (non-combustible materials)
3	Outdoor air inlet hood with gallery (attached drip-proof hood type)
4	Air filter
5	Duct fan
6	Service panel
7	Damper

The air through the duct does not pass through the air filter of the indoor units. Fit an air filter (Field supplied) to the suction side of the outdoor air inlet duct in a position that allows for easy maintenance operations.

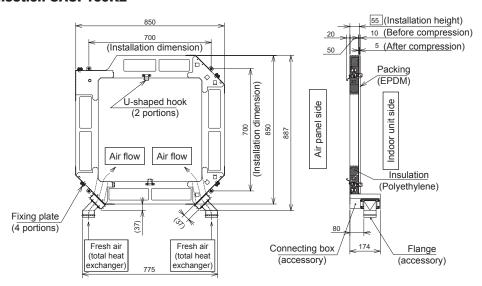
Insulate the duct and its connection using fireproof insulating materials only.


The parts shown in the above figure will be field-supplied.

Install an inspection panel -6- below the duct fan so that maintenance operations can be carried out on the air filter and the damper.

Always use a damper and adjust the amount of air where a fan with a supply volume higher than the outdoor air inlet volume limit is used.

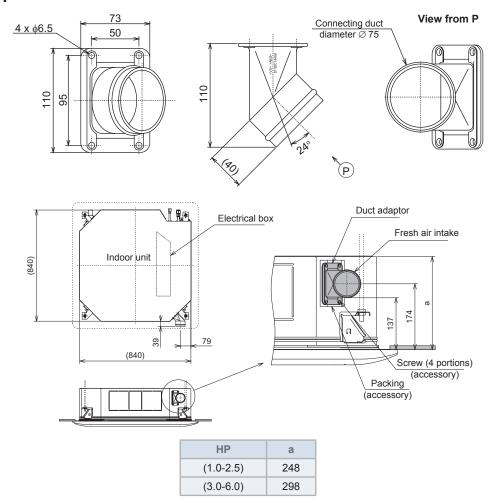
2.13.1.1 For RCI-FSN4 indoor units: OACI-160K2 and PD-75A


The inlet of outdoor air is possible through the PD-75A or the OACI-160K2 duct connection in the position shown in the figure. (Sold separately).

(*) 1 or 2 duct adapter can be installed

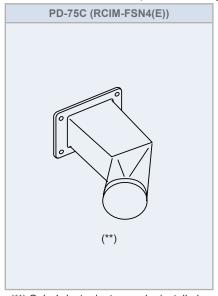
(**) Only 1 duct adapter can be installed

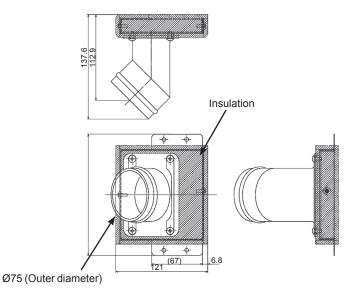

Duct connection OACI-160K2


The total height of the unit is increased by around 55 mm when the outdoor air inlet duct (OACI-160K2) is installed. Take this measurement into account when installing the unit.

Service space

HP	а	b
(1.0-3.0)	328	241
(4.0-6.0)	378	291

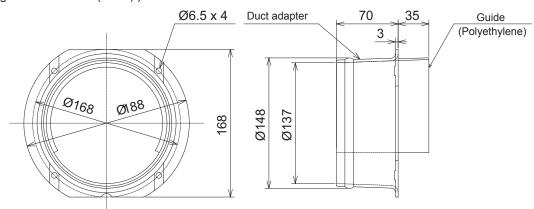

Duct adapter PD-75A



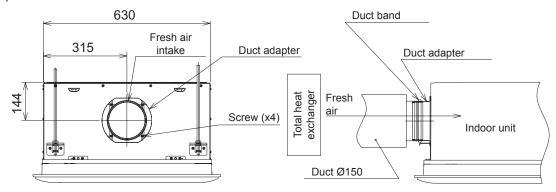
2.13.2 Duct adapters

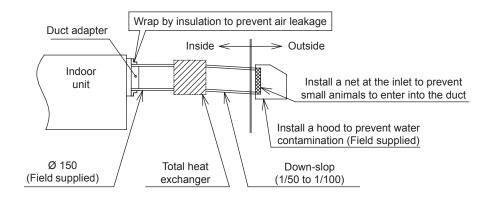
2.13.2.1 For RCIM-FSN4(E) indoor units: PD-75C

The inlet of outdoor air is possible through the PD-75C duct adapter for RCIM-FSN4(E) indoor units



(**) Only 1 duct adapter can be installed

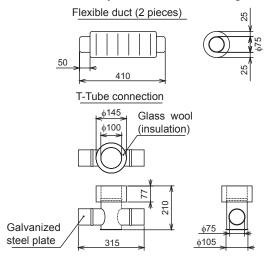

HP	а
(1.0-2.5)	248
(3.0-6.0)	298


2.13.2.2 For RCD-FSN3 indoor units: PD-150D

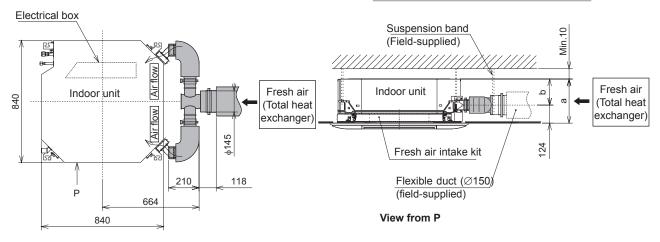
The PD-150D duct adapter for RCD-FSN3 is used as a connection flange to attach the fresh air intake outlet (for connecting the flexible duct (Ø150).)

An example of installation of the duct adapter PD-150D is shown below. Refer to "Installation & Maintenance Manual" of duct adapter for more detailed information of the installation of fresh air intake duct.

Specifications

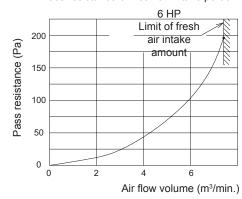

Item		RCD-(0.8-6.0)FSN3	
Maximun Capacity of Fresh Air Intake m³/min		within 10% of indoor unit airflow volum at "High2" fan speed	
Usage		Fresh air intake outlet	
Connecting Duct Diameter mm		Ø 150	
Material		ABS resin (Flame resistance: UL94V-0)	
Accessories		Packing, Fixing screws (x4), Installation manual	

2.13.3 T-duct connection position


2.13.3.1 For RCI-FSN4 indoor units: TKCI-160k

The T-duct connection is designed for easier connections between the outdoor air inlet and the connection duct.

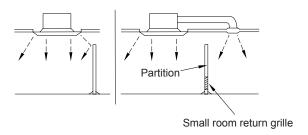
The T-duct connection can only be installed when using the outdoor air inlet kit (optional) or the filter box (optional).



	Dimension	
Model	а	b
1.0 - 2.5	303	179
3.0 - 6.0	353	229

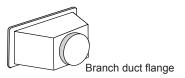
The outdoor air inlet duct resistance increases as indicated in the following figure when using the T-duct connection. Use it as a guide for fan selection.

Pass resistance of fresh air intake portion


This chart shows the relationship between the air flow volume and the pass resistance when the T-tube connecting kit is used with the fresh air intake kit.

2.13.3.2 Branch pipe (PDF-71C, PDF-160CI)

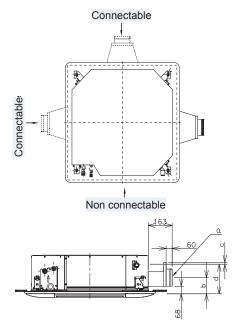
If there are obstacles such as partitions inside the room that prevent the air from circulating correctly, branches can be installed to provide an even air temperature.


Suitable return air grilles must be installed in line with the volume of return air. If air conditioning is provided in an adjoining room, always install a return grille.

Flexible duct (max. length: 5m)

Example of a branch pipe.

Example of branched duct



Branch pipe installation

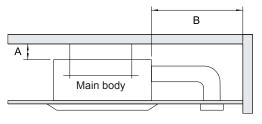
The connections for the branch pipe are indicated in the following figure.

There are six knock-out holes. Cut the insulation material on the outer surface in a circle and line up the notches at the four corners. Use a screwdriver or similar and remove.

Prepare the square connection duct (field-supplied) or use a flexible duct with a diameter of 150 or 200 mm (according to the indoor unit model)

Duct connection dimensions

Model	Units	а	b	С	d
PDF-71C1	RCI-(1.0-2.5)FSN4	150	180	36	246
PDF-160C1	RCI-(3.0-6.0)FSN4	200	205	33	296

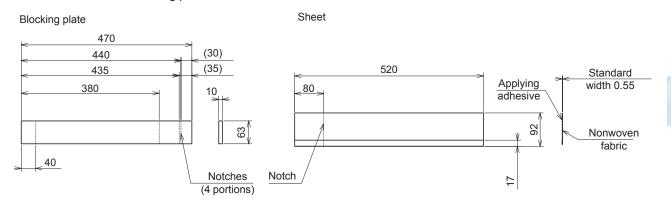

Fit enough insulation to the connection between the pipe and the main body of the indoor unit and to the connection between the duct and the pipe.

Use a set of three-way outlet parts (optional parts) and completely block the air outlet on the branched duct side of the panel (to avoid condensation and direct the air towards the branched duct).

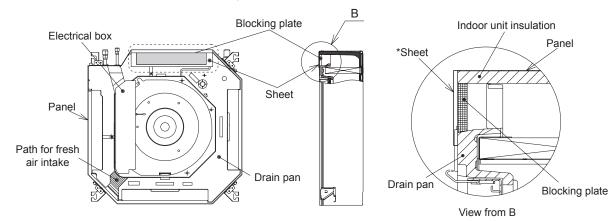
Model	Units	Remarks
PI-160LS1	RCI-(1.0-6.0)FSN4	To connect to the panel outlet

The quantity of air from the branched duct side is shown in the table below as the air quantity index of the unit. If two branched ducts are connected to the unit, the amount of air from the branched duct side will be greater and the speed of the air on the 3-way outlet side will decrease. Therefore, the hot air projection distance will be reduced.

- 1 Where the branch duct is installed from this viewpoint, apply the dimensions indicated in the figure below to avoid accidents.
- 2 Use ducts with non-combustible insulating materials.
- 3 Fit enough heat insulation to the duct to avoid condensation.
- 4 Follow the regulations in force regarding this matter in the place of installation or use the dimensions indicated in the figure below if there are no applicable regulations.

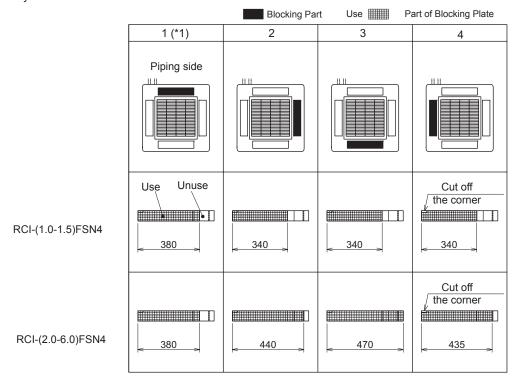

Magazzamant	Wall and pillar material	
Measurement	Combustible materials	Non-combustible materials
А	≥ 100 mm	≥ 50 mm
В	≥ 100 mm	≥ 60 mm

2.13.4 Outlet air flow interlock

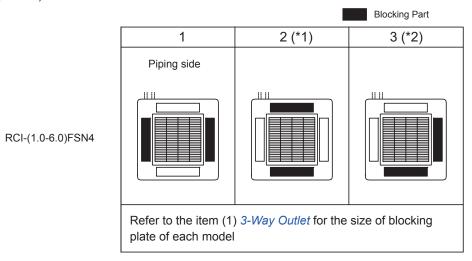

2.13.4.1 For RCI-FSN4 indoor units: PI-160SL1

If only three outlets are necessary, use the PI-160SL1 3-way outlet part set.

The dimensions of the blocking plate and the sheet are:

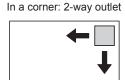


Install the interlock plates as indicated in the figure.


* Do not attach the sheet to the indoor unit insulation and the panel. If adhered, the drain pan can not remove.

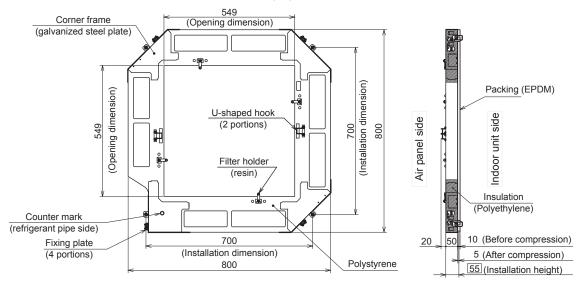
Example of 3-Way Outlet

Example of 2-Way Outlet

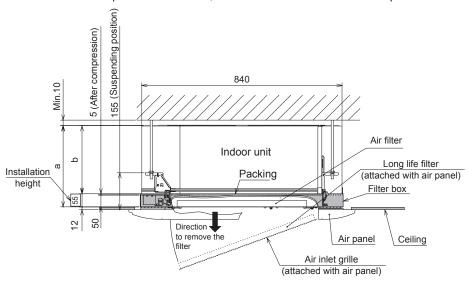

The air outlet directions can not be selected other than the figure below. (If other air outlet directions are selected, dew condensation may occur.)

- *1 Change the position of the outlet temperature thermistor. If not, the room temperature adjustment may not be available.
- *2 In the case of Example 3, the air flow volume will decrease compared with other cases. Set the high speed setting. Example for 3-Way and 2 Way Outlet

Near the wall: 3-way outlet

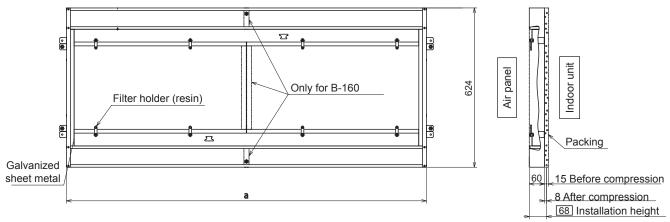

In rectangular room: 2-way outlet

2.13.5 Filter box


2.13.5.1 For RCI-FSN4 indoor units: B-160H2

The dimensions of the filter box are shown in the following figure.

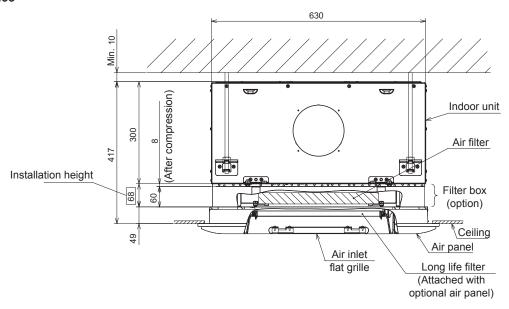
When the filter box is installed, the total height of the unit increases by approximately 55 mm. Therefore, pay attention to the installation space.


Bear in mind that the size before compression is 10 mm, but the size is reduced after compression to 5mm.

	Dimensions	
Model	а	b
1.0 - 2.5	291	236
3.0 - 6.0	341	286

2.13.5.2 For RCD-FSN3E indoor units: BD-90H and BD-160HD

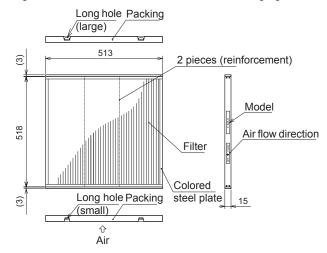
When the filter box is installed, the total height of the unit increases by approximately 68 mm. Therefore, pay attention to the installation space.



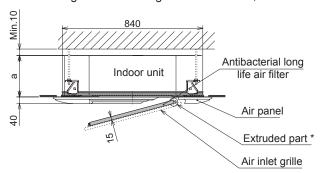
The filters are sold separately.

	Dimensions (mm)
Model	а
BD-90HD	850
BD-160HD	1410

Service space


Specifications

		B-90HD	B-160HD	
I	tem	RCD-(0.8-3.0)FSN3 RCD-(4.0-6.0)FS		
Quantity		1		
Installation height	mm	68		
Material		Polyethylenes. Galvanized steel plate		
Accessories		Screw, Hook packing and Installation manual		
Weight	kg	5.0	7.5	
Applicable air filter (Option)	Antibacterial long life filter (Gravimetric method: 65%)	F-90MD-K1	F-160MD-K1	

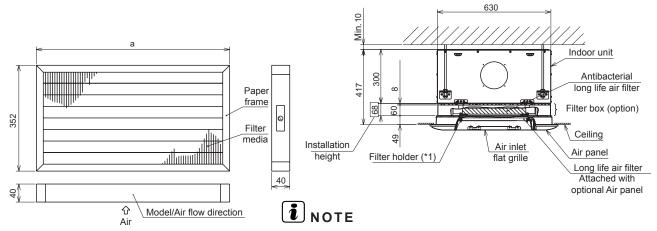

2.13.6 Anti-bacteria filter

2.13.6.1 For RCI-FSN4: F-160L-K

The dimensions of the long-lasting anti-bacteria filter are shown in the following figure.

To fit the filter, insert the tab on the suction grille into the large hole in the filter, as shown in the figure below.

* Put the square holes into the extruded parts of air inlet grille


Model	a (mm)
RCI-(1.0-2.5)FSN4	238
RCI-(3.0-6.0)FSN4	288

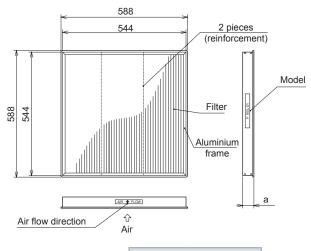
Specifications

Р	art	RCI-(1.0-6.0)FSN4	
Dust collection efficien	ncy (%)	50 (gravimetric method)	
Air flow rate (m³/min)		35.0	
Initial pressure loss Pa	a	28.0	
Final pressure loss Pa		62.0	
Filter/Frame colour		White/Brown	
Working life		4 years (with maintenance every 1250 hours)	
Cleaning		Available (*)	
Weight (kg)	Neight (kg) 0.6		
Performance		Avoids the multiplication of bacteria and mould	
Filter material Antibacterial fibre		Modified acrylic fibre 1 (containing inorganic anti-bacterial substance) Modified acrylic fibre 2 (containing organic anti-bacterial substance)	
	Reinforce net	PP	

^(*) This is the standard working life of the filter and its duration may vary depending on the conditions of use. Clean the filter with water or neutral detergent.

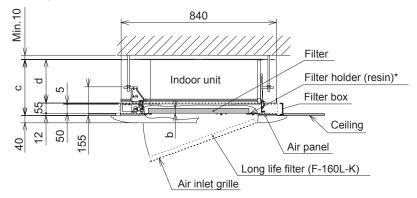
2.13.6.2 For RCD-FSN3E indoor units: F-90MD-K1 and F-160MD-K1 (Antibacterial long life air filter)

*1) Insert the antibacterial long life air filter into the filter box, the fix it with the filter holder


				Air flow chart
Applicable Indoor unit		RCD-(0.8-3.0)FSN3	RCD-(4.0-6.0)FSN3	
Dust collection efficiency	%	65 (Gravimetric method (*1))		
Air flow	m³/min.	19.5	32.5	
Initial pressure Loss	Pa (mmAq)	17.0	20.5	(ed) 40
End pressure Loss	Pa (mmAq)	55.9	62.8	G) sso
Colour (Filter/frame)		White / Brown		→ 20
Life period		8 years (with 2500 hours maintenance)		anssal A B B
Cleaning		Not available		0 10 20 30 40
Accessory		Installation manual		Air volume (m³/min)
Weight	kg	0.9	0.8 x 2	A:F-90MD-K1
Performance		Avoids the multiplication of bacteria and mould		B:F-160MD-K1
Filter material	Antibacterial fibre	Synthetic fibre N	lon-woven fabric	

2.13.7 Deodorising filter

2.13.7.1 For RCI-FSN4 indoor units: F-71L-D1 and F-160L-D1


The dimensions of the deodorising filter are indicated in the following figure.

Remember that the filter thickness depends on the model.

	Model		
Dimension	F-71L-D1 F-160L-D1		
а	25	45	

The position of the deodorising filter is shown below:

* Insert the air filter into the filter box and fix the air filter by filter holder.

	Dimension			
Model	b c d			
1.0 - 2.5	25	303	236	
3.0 - 6.0	45	353	286	

Specifications

Part		F-71L-D1	F-160L-D1
Applicable indoor u	unit model	1.0 to 2.5	3.0 to 6.0
Dust collection effic	ciency (%)	50 (gravime	tric method)
Air flow rate (m³/mi	in)	22.0	35.0
Initial pressure loss	s Pa	19.0	36.0
Final pressure loss	s Pa	48.0	78.0
Filter/frame colour		Pink/	Silver
Working life		3 years (with maintena	ince every 3-6 months)
Reuse	euse Available (dried by sunlight) (*1)		by sunlight) (*1)
Cleaning		Available (washe	ed with water) (*2)
Weight (kg)		0.8	1.2
Performance		Absorbs smoke,	body odour, etc.
	Antibacterial fiber		bed fiber for basic gas) bed fiber for acidic gas)
Filter material	Reinforce net	PP	/PE
	Reinforce sheet	PP	
Applicable filter box	x (option)	B-160H2	
Restrictions of use		Washing with detergents is forbidden	

^(*1) This is the standard working life of the filter and its duration may vary depending on the conditions of use. Clean the filter with water or neutral detergent.

^(°2) Wash the filter with water or neutral detergent to avoid reducing the absorption capacity.

3. Piping work and refrigerant charge

Index

3.1	Refrigerant pipe selection	96
	3.1.1 Refrigerant pipe selection	96
3.2	Copper pipes, sizes, connection and insulation	97
	3.2.1 Copper pipes and sizes	97
	3.2.2 Pipe connection	98
	3.2.3 Insulation of multikits and/or branches	98
3.3	General instructions on the installation of refrigerant pipes	99
3.4	Copper refrigerant pipe	100
	3.4.1 Three principles on work with refrigerant pipes	100
	3.4.2 Preparing and cutting copper refrigeration pipes	101
	3.4.3 Bending copper pipes	102
	3.4.4 Brazing copper refrigeration pipes	103
	3.4.5 Flared connection mounting	104
	3.4.6 Refrigerant pipe suspension	105
3.5	Refrigerant and drain hose installation	106
	3.5.1 RCI-(1.0-6.0)FSN4 - 4-way cassette	106
	3.5.2 RCIM-(0.6-2.5)FSN4(E) - 4-way cassette (compact)	108
	3.5.3 RCD-(0.8-6.0)FSN3 - 2-way cassette	109
	3.5.4 RPC-(3.0-6.0)FSN3E - Ceiling type	110
	3.5.5 RPC-(1.5-6.0)FSN3E - Ceiling type	112
	3.5.6 RPI-(0.6-1.5)FSN4E - Ducted indoor unit	116
	3.5.7 RPI-(2.0-6.0)FSN4E - Ducted indoor unit	118
	3.5.8 RPI-(8.0/10.0)FSN3E-(f) - Ducted indoor unit	120
	3.5.9 RPI-(16.0/20.0)FSN3PE(-f) - Ducted indoor unit	121
	3.5.10 RPIM-(0.6-1.5)FSN4E(-DU) - Ducted indoor unit	123
	3.5.11 RPK-(0.6-4.0)FSN(H)3M - Wall type	125
	3.5.12 RPF(I)-(1.0-2.5)FSN2E - Floor type	128
3.6	Refrigerant charge	129
3.7	Precautions in the event of refrigerant leaks	129
	3.7.1 Maximum permissible concentration of hydrofluorocarbon (HFC)	129
	3.7.2 Calculation of the concentration of refrigerant	129
	3.7.3 Countermeasures in the event of refrigerant leaks	129

3.1 Refrigerant pipe selection

3.1.1 Refrigerant pipe selection

Consult the corresponding Technical Catalogue for outdoor units from the UTOPIA or SET FREE Series.

♦ Pipe size selection

Select the pipe size in line with the following instructions:

- Between the outdoor unit and the branch pipe (multi-kit): select the same pipe connection size as for the outdoor unit.
- 2 Between the branch pipe (multi-kit) and the indoor unit: select the same pipe connection size as for the indoor unit.

CAUTION

- Do not use refrigerant pipe sizes other than those indicated in the corresponding Technical Catalogue for outdoor units. The diameter of the refrigerant pipes depends directly on the power of the outdoor unit.
- If larger diameter refrigerant pipes are used, the circuit lubrication oil tends to separate from the gas carrying it. The compressor will be seriously damaged due to a lack of lubrication.
- If smaller diameter refrigerant pipes are used, the gas or liquid refrigerant will have serious difficulties in circulating. System performance will be affected. The compressor will run under more severe conditions than foreseen and will be damaged in a short space of time.

Multi-kit or distributor selection

- Pipe connection sizes on outdoor units, indoor units and the multi-kit or distributor vary depending on the system. Consult the Service Manual for the UTOPIA or SET FREE Series.
- The sizes of the indoor and outdoor units are different. Adjust the flare adapter (accessory) to the indoor pipe connection.

3.2 Copper pipes, sizes, connection and insulation

3.2.1 Copper pipes and sizes

⚠ CAUTION

- The copper pipe used in the refrigeration installations is different to the copper pipe used in installations carrying domestic or heating
- The copper pipe for refrigeration installations is especially treated for outdoors and indoors. The interior surface finish makes it easier for the refrigerant to circulate and withstands the action of the lubricant oil applied to outdoor equipment.

Prepare the copper pipes provided by the supplier.

Select the pipe with the appropriate diameter and thickness. Use the table below to select the most appropriate pipe:

Nominal	Nominal diameter		Supply	
mm	Inches	Thickness mm	Supply	
Ø6.35	1/4	0.80	Coil (soft)	
Ø9.52	3/8	0.80	Coil (soft)	
Ø12.70	1/2	0.80	Coil (soft)	
Ø15.88	5/8	1.00	Straight lengths (hard) / Coil (soft)	
Ø19.05	3/4	1.00	Coil (soft)	
Ø22.22	7/8	1.00	Coil (soft)	
Ø25.40	1	1.00	Straight lengths (hard half)	
Ø28.57	1-1/8	1.00	Straight lengths (hard half)	

Always use clean copper pipes with no signs of knocks or cracks. Make sure there is no dust or dampness on the inside. Before you install the pipes, clean the inside with oxygen-free nitrogen gas to eliminate any remains of dust or other substances.

A CAUTION

- Do not use hand saws, circular saws, abrasive grinders or other tools that generate shavings.
- Strictly follow national or local regulations regarding occupational health and safety.
- Wear appropriate means of protection during cutting or brazing operations and installation (gloves, eye protection, etc).

On completing the installation of the refrigerant pipes -B-, insulate them appropriately using suitable insulating material -A- and seal the open space between the holes made and the pipe, as shown in the figure.

3.2.2 Pipe connection

End of refrigerant pipe protected correctly.

Cover the end of the pipe appropriately when it is to be inserted through holes in walls and roofs, etc.

Keep the ends of the pipes covered while other installation work is being carried out to avoid the entry of dampness or dirt.

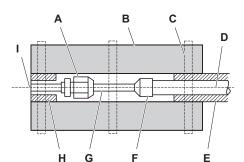
End of refrigerant pipe unprotected.

Do not place the pipes directly on the ground without appropriate protection or adhesive vinyl tape to cover the ends.

Where the pipe installation is not completed for a certain amount of time, weld the ends of the pipe to seal. Then fill it with oxygen-free nitrogen gas through a Schrader valve to avoid the accumulation of humidity and/or contamination through

Secure the connection pipe as indicated in the image. Use the indoor unit's insulation.

- A: flare nut on the indoor unit.
- B: insulation on the pipe connection to the indoor unit using the insulating material supplied.
- C: secure the insulation using the flange supplied or using suitable adhesive tape.
- D: Installation refrigerant gas pipe.
- E: installation insulation (field-supplied).
- F: brazing.
- G: flare the pipe after inserting the flare nut.
- H: indoor unit insulation.
- I: indoor unit.


- Where polyethylene foam insulation is used, a 10 mm thick layer should be used for the liquid pipe and between 15 and 20 mm for
- Install the insulation after the pipe surface temperature has dropped to the room temperature, otherwise the insulation may melt.

Do not use insulating material that contains NH₃ (ammonium), as it could damage the copper in the pipe and subsequently cause leaks.

Where the fitter has supplied his own branches, these should be appropriately insulated to avoid decreases in capacity in line with to environmental conditions and condensation on the surface of the piping due to low pressure.

3.2.3 Insulation of multikits and/or branches

Install the insulation packages in the multikits and/or branches using suitable vinyl tape.

3.3 General instructions on the installation of refrigerant pipes

The copper pipe used for the installation must be specific for refrigeration systems as is indicated in section "3.2.1 Copper pipes and sizes".

The diameter of the refrigerant pipes depends directly on the power of the outdoor unit. The pipe diameter allocated must be respected, in line with the instructions given in chapter "3.1 Refrigerant pipe selection".

The location of the units and the pipe layout must be carried out in line with the instructions given in the Service Manual corresponding to the outdoor units of the UTOPIA or SET FREE systems, especially when the outdoor unit is situated at a different height than the indoor units.

System performance depends on the distance between the outdoor and indoor unit. This aspect must be taken into account for the installation of the refrigerant pipe. The outdoor units are factory-charged with sufficient refrigerant for a standard installation of certain characteristics. Where the system installation requirements involve an increase in the distance between the outdoor and indoor unit, refrigerant must be added to the installation in line with the instructions given in the Technical Catalogue and the Service Manual corresponding to the outdoor units of the UTOPIA or SET FREE systems.

3.4 Copper refrigerant pipe

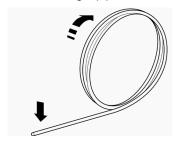
3.4.1 Three principles on work with refrigerant pipes

The basic refrigerant pipe installation work must be carried out paying particular attention to avoid the infiltration of humidity or dust while working with the refrigerant piping. Otherwise, rust may appear inside the system or the units and cause serious faults.

Therefore, all work carried out on the copper pipes for refrigerant must follow the three principles described below.

Principle	Cause of the fault	Possible fault	Preventive measure
		Ice on the inside of the pipe,	Pipe protection:
	Water infiltration due to	on the expansion valve (water obstruction)	Seal the ends of the pipes.
1. Absence of humidity	insufficient protection on the ends of the pipes.	+	Protect and insulate the ends of the pipes.
Ensure the atmosphere remains totally dry	Condensation on the inside of the pipes.	Absorption of oil humidity and oxidation	↓
, .	Insufficient vacuum.	\downarrow	Wash
	mounision vasaum.	Filter clogging, insulation and compressor fault	↓ Vacuum dry ^(*)
		Expansion valve, capillary tube	vacuum ury 🗥
	Dust or other elements entering	and filter clogging.	Pipe protection:
2 Cleaning	the ends of the pipes.		Fit caps to the ends of the pipes.
2. Cleaning Absence of dust on the inside of the piping	Film of rust formed during brazing without nitrogen injection.	Oil oxidation. Compressor fault	Protect and insulate the ends of the pipes.
	Insufficient nitrogen wash after	\downarrow	↓ ↓
	brazing.	Compressor fault, insufficient cooling or heating	Wash
			Carry out basic brazing work carefully
			↓ ↓
	Brazing fault.	Lack of refrigerant	Carry out basic flaring work carefully
3. Absence of leaks	Flaring fault and insufficient	Drop in performance	↓
There must be no leaks	torque.	Compressor fault	Carry out basic connection work
There must be no leaks	Insufficient torque on	Oil oxidation.	carefully
	compressor connectors.	↓	↓ A:-4:-1-4.44
		Compressor overheating	Airtight test
			\
			Preserving of vacuum in the installation

^(*) One gram of water becomes approximately 1000 I of steam at 1 Torr. (1 Torr = 1 mmHg = 133.32 Pa). Therefore, a long time must be spent on vacuum work using a small pump.


3.4.2 Preparing and cutting copper refrigeration pipes

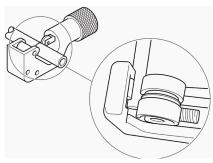
Preparation

Clean the area where the copper refrigeration pipe preparation work is to be carried out. It must particularly be free of waste, soil, wood or metal shavings and, in general, any substance that could enter the ends of the pipe during handling.

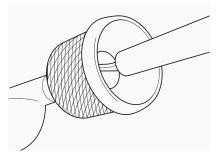
The copper pipe must be clean and have no remains of adhesive, cement, dust or other substances adhered to it.

Where the copper pipe is supplied in rolls, fit a cap on the end and unwind it while it is resting on the ground so that the turning movement of the roll as it is unwound forms a straight pipe.

- The rolls of copper refrigeration pipe are normally supplied with caps on their ends.
- Where the roll of pipe does not come supplied with caps, check that the inside of the pipe is clean. If it is not, use a new roll of pipe.
- It is also possible to cover the end of the pipe temporarily using high quality adhesive tape.
- Do not wind and unwind the pipe continuously, as the properties of the copper for refrigeration pipes are altered, making it more rigid and brittle


Cutting

Define the necessary length of pipe and add a few more centimetres to give yourself enough margin in case the cut has to be repeated.


Cut the pipe using a pipe cutter.

Ensure the pipe cutter rollers remain perfectly seated on the copper pipe.

Remove any internal burrs arising from the pipe cutter using a pipe reamer.

- While making the cut, slant the pipe downwards to prevent burrs or shavings from falling inside the pipe.
- Do not use hand saws, circular saws, abrasive grinders or other tools that generate shavings.
- Strictly follow national or local regulations regarding occupational health and safety.
- Wear appropriate means of protection during cutting or brazing operations and installation (gloves, eye protection, etc).

If the pipe is not to be immediately flared, protect the end of the pipe using a suitable cap or high quality insulation tape.

Do not leave the ends of flared pipes unprotected.

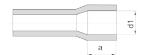
3.4.3 Bending copper pipes

Where the refrigerant pipes are to be bent, always use a bending tool or a spring, both of a diameter that is adapted to the pipe to be bent.

The bending radii must be as wide as possible so that the gas or liquid refrigerant flow is not altered and no circulation noise is generated during operation.

- Bends in refrigerant pipes reduce system performance due to changes in the flow of gas and liquid refrigerant circulation.
- Do not use any other tool to bend pipes, as the pipe may be excessively bent or crushed and its inner diameter reduced.

Never bend pipes with radii of less than 90°.

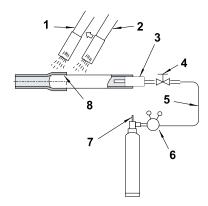

3.4.4 Brazing copper refrigeration pipes

Brazing is the most important job in the installation of refrigeration pipes. In the event of an accidental leak due to negligence during the brazing process, the capillary tubes will be obstructed or the compressor seriously damaged.

To guarantee correct brazing between pipe surfaces, prepare them for widening according to the data in the following

/ CAUTION

- It is important to check the pipe fitting measurement as indicated in the following table.
- If a tool is used to widen the copper pipe, the dimensions indicated must be respected.

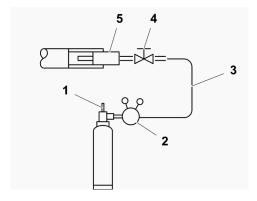

Copper pipe size	Ød1	Tolerance	а
Ø6.35 +0.08 / -0.08	Ø6.5 +0.1 / ₀	+0.33 / 0.07	6
Ø9.52 ^{+0.08} / _{-0.08}	Ø9.7 +0.1 / ₀	+0.35 / 0.09	8
Ø12.7 +0.08 / -0.08	Ø12.9 +0.1 / ₀	+0.38 / 0.19	8
Ø15.88 ^{+0.09} / _{-0.09}	Ø16.1 +0.1 / ₀	+0.41 / 0.13	8
Ø19.05 +0.09 / _{-0.09}	Ø19.3 ^{+0.1} / ₀	+0.44 / 0.16	10
Ø22.22 ^{+0.09} / _{-0.09}	Ø22.42 ^{+0.1} / ₀	+0.39 / 0.11	10
Ø25.4 ^{+0.12} / _{-0.12}	Ø25.6 ^{+0.1} / ₀	+0.42 / 0.08	12
Ø28.58 ^{+0.12} / _{-0.12}	Ø28.78 ^{+0.1} / ₀	+0.42 / 0.08	12
Ø31.75 ^{+0.12} / _{-0.12}	Ø32.0 +0.1 / ₀	+0.47 / 0.13	12
Ø38.1 +0.12 / _{-0.12}	Ø38.3 ^{+0.1} / ₀	+0.52 / 0.18	14

The necessary brazing must be done by brazing, using a copper and silver alloy.

Before you start brazing, install a dry nitrogen gas injection system inside the pipes to prevent the copper from being exposed to the air while it is subjected to high temperatures.

CAUTION

- Do not braze on refrigerant pipes without a dry nitrogen gas injection system.
- Otherwise, a layer of rust will form that may become detached when the refrigeration system is started, causing filter or compressor blockages.
- NEVER USE oxygen, acetylene or fluorocarbonated gas to replace nitrogen gas: this will cause an explosion or will generate toxic
- 1 Heat the outer pipe previously to ensure the filler metal flows more easily.
- 2 Heat the inner pipe evenly.
- 3 Rubber cap.
- 4 Valve with no packing.
- 5 High pressure pipe.
- 6 0.03 to 0.05 MPa (0.3 to 0.5 kg/cm² G).
- 7 Reducer valve: only open the valve when gas is required.
- 8 Nitrogen gas flow, 0.05 m³/h or less.



Keep the nitrogen gas pressure within the indicated values. A rise in pressure in the pipe could cause an explosion.

3.4.5 Flared connection mounting

Line up the end of the flared pipe to face the fitting to which it is to be threaded.

- 1 Reducer valve
- 2 Pressure gauge
- High pressure pipe.
- 4 Valve with no packing.
- 5 Rubber cap

Gently rest the female cone on the male cone and check that the measurement is correct. Keep the connection lined up with one hand and gently thread on the flare nut with the other.

Tighten the connection to the corresponding tightening torque indicated in the table below.

Nominal diameter		Tightoning torque
mm	Inches	Tightening torque
Ø6.35	1/4	20 Nm
Ø9.52	3/8	40 Nm
Ø12.7	1/2	60 Nm
Ø15.88	5/8	80 Nm
Ø19.05	3/4	100 Nm
Ø22.20	7/8	-
Ø25.40	1	-
Ø28.60	1-1/8	-

- Secure the fixed connection with a suitable wrench and use a torque wrench to tighten the flare nut on the threaded connections.
- Do not exceed the torque value indicated in the table. The fitting can become misshapen and the connection may leak.

Refrigerant pipe insulation

The refrigerant circulates through the pipes at a very low temperature (several degrees below zero, depending on the time of year and the installation). The difference in temperature with the ambient air is extremely large and causes two significant phenomena to be taken into account:

- Cold irradiation along the entire pipe.
- Condensation of the humidity in the surrounding air.

Actually, cold irradiation is the temperature gain experienced by the gas, as when it circulates under pressure and at such low temperatures along the inside of the pipes, it is actually liquid and obtains the outdoor temperature (boiling at a very low temperature) to turn into gas.

As a result of the temperature gain (although it is actually perceived as cold emission), the loses its capacity to cool and the system does not perform as expected. Furthermore, the humidity in the surrounding air condenses on the pipe and the greater the temperature difference and the longer the pipe, the more water is produced.

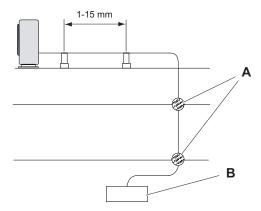
In view of this, the refrigerant pipes must be fitted with a suitable insulation system that prevents the increase in temperature of the refrigerant and the subsequent loss of energy and the condensation of water along the entire pipe.

Refrigerant pipes must always be separately insulated, using closed cell insulation foam designed especially for refrigeration. This insulation foam, supplied by the installer, can be obtained in different formats. The most common is in the form of sheets and rolls of tubes of different diameters.

Furthermore, all connections between the different sections of insulation tubes must be reinforced with adhesive tape of the same characteristics.

Once all of the unit installation and adjustment work is complete, all threaded joints and valves must also be covered with adhesive tape.

3.4.6 Refrigerant pipe suspension

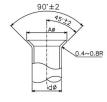

Only suspend the refrigerant pipes at specific points of the building. Whenever possible, avoid suspending them from parts subject to structural movement, e.g. places close to expansion joints or outer walls, etc.

Prevent the refrigerant pipes from touching weak parts of the building, such as walls (non-structural), partition walls, ceilings, etc. Otherwise, operating noise may be caused by pipe vibrations (pay special attention in the case of short pipes).

A: points where the refrigerant pipes pass through the different structural parts of the building.

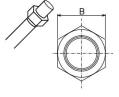
B: indoor unit.

Use suitable suspension systems for refrigeration pipes or clamps to suspend the pipes, as shown in the diagram.



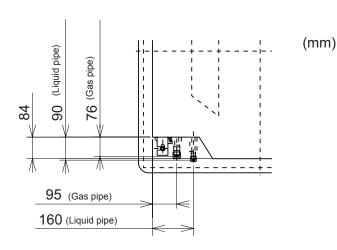
3.5 Refrigerant and drain hose installation

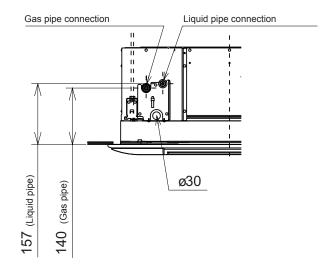
General notes


Dimensions of the flare and thickness of the copper pipe

Nomina	al diameter	Thickness	Measurement A ^{+ 0} / _{-0.4 mn}	
mm	inches	mm	Wicasurement A 7-0.4 mm	
Ø6.35	1/4	0.80	9.1	
Ø9.52	3/8	0.80	13.2	
Ø12.70	1/2	0.80	16.6	
Ø15.88	5/8	1.00	19.7	

Dimensions of the flare nuts for flared connections

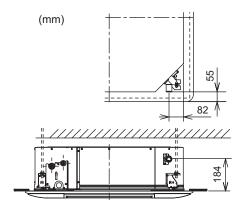

Nominal diameter		Measurement B mm	
mm	inches	weasurement b mm	
Ø6.35	1/4	17	
Ø9.52	3/8	22	
Ø12.70	1/2	26	
Ø15.88	5/8	29	



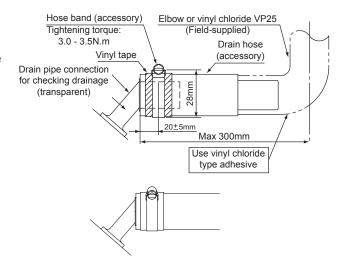
3.5.1 RCI-(1.0-6.0)FSN4 - 4-way cassette

♦ Refrigerant pipe installation

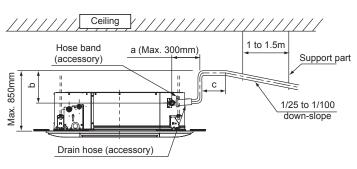
The correct position for the refrigerant pipe connection is shown below. The pipe connection must be accessible from all directions (above, left or right).



mm (in) Liquid piping Gas piping RCI-(1.0/2.0)FSN4 Ø 6.35 (1/4) Ø 12.70 (1/2) RCI-(2.5-6.0)FSN4 Ø 9.52 (3/8) Ø 15.88 (5/8)

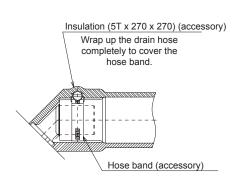

♦ Drain pipe installation

The position of the drain pipe connection is shown below.



Prepare a polyvinyl chloride pipe with a 32mm outer diameter.

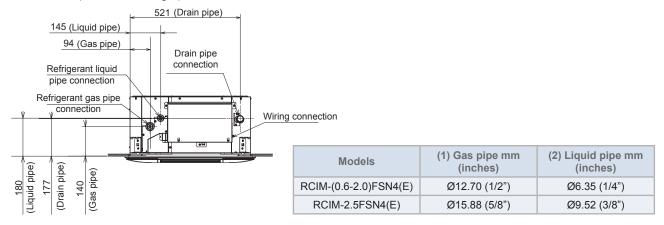
Fasten the tubing to the drain hose with an adhesive and the factory-supplied clamp.


The drain piping must be performed with a downslope pitch of 1/25 to 1/100.

Do not apply excessive force to the Drain Pipe connection. It could cause a damage.

Do not use a bent or twisted Drain Hose. It will cause water leakage.

Insulate the drain pipe after connecting the drain hose.


(mm)

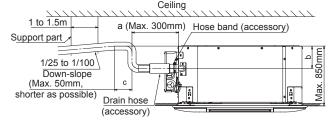
3.5.2 RCIM-(0.6-2.5)FSN4(E) - 4-way cassette (compact)

♦ Refrigerant pipe installation

The correct position for the gas refrigerant pipe connection is shown below. The pipe connection must be accessible from all directions (above, left or right).

Drain pipe installation

The correct position for the drain hose connection is shown below.

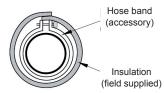

Prepare a polyvinyl chloride (PVC) pipe with an outer diameter of 32 mm.

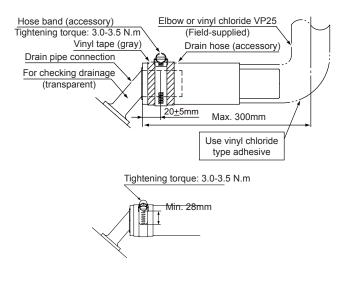
Secure the pipe with the clamp and adhesive supplied.

adhesive supplied.

The drain hose must have a gradient of 1% (1/100) to 4% (1/25).

Consider the following sizes: $a + b + c \le 1100 \text{ mm}$.

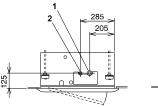

Drain pipe connection

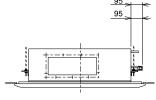

For a correct assembly of the drain hose accessory, follow the instruction shown in the picture below.

A CAUTION

- Do not apply adhesive between the drain hose connection and the drain hose.
- Do not apply too much force when making the drain hose connection as this could damage it.
- Do not use bent or twisted drain pipes as these will cause water leaks.

Then insulate the drain hose appropriately.

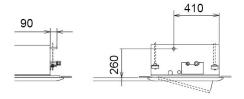




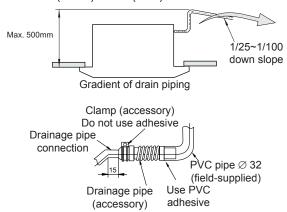
3.5.3 RCD-(0.8-6.0)FSN3 - 2-way cassette

♦ Refrigerant pipe installation

The correct position for the refrigerant pipe connection is shown below. The pipe connection must be accessible from all directions (above, left or right).

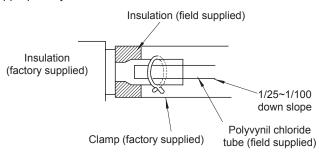

Models	(1) Gas pipe mm (inches)	(2) Liquid pipe mm (inches)
RCD-(0.8/2.0)FSN3	Ø12.70 (1/2)	Ø6.35 (1/4)
RCD-(2.5-6.0)FSN3	Ø15.88 (5/8)	Ø9.52 (3/8)

◆ Drain pipe installation


The correct position for the drain hose connection is shown below.

Prepare a polyvinyl chloride (PVC) pipe with an outer diameter of 32 mm.

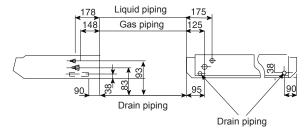
Secure the pipe with the clamp and adhesive supplied.


The drain hose must have a gradient of 1% (1/100) to 4% (1/25).

A CAUTION

- Do not apply adhesive between the drain hose connection and the drain hose.
- · Do not apply too much force when making the drain hose connection as this could damage it.
- Do not use bent or twisted drain pipes as these will cause water leaks.

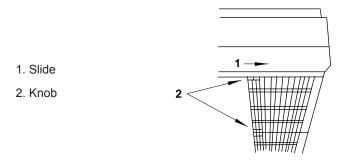
Then insulate the drain hose appropriately.

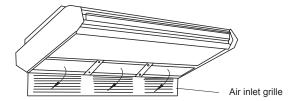


3.5.4 RPC-(3.0-6.0)FSN3E - Ceiling type

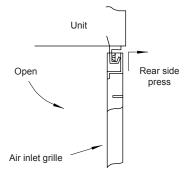
♦ Refrigerant pipe installation

The correct position for the refrigerant pipe connection is shown below. The refrigerant piping can be connected to the top or rear of the unit.

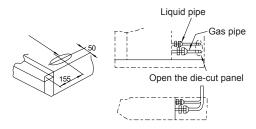

Each part has a die-cut hole as is indicated in chapter "2. Unit installation".

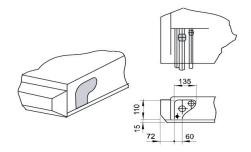

Models	(1) Gas pipe mm (inches)	(2) Liquid pipe mm (inches)	
RPC-(3.0-6.0)FSN3E	Ø15.88 (5/8)	Ø9.52 (3/8)	

The piping must be installed from the bottom of the unit.


1 Remove the air inlet grille and slide the buttons on the grille backwards.

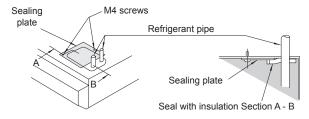
2 Open the air inlet grille

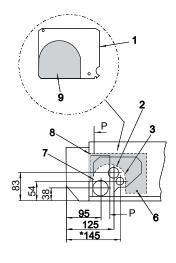

3 Push and slide the air inlet grille backwards and open it.



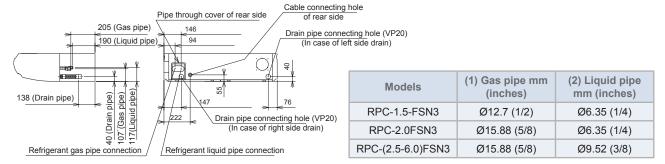
- 4 Remove the die-cut panel from the required part of the unit to install the refrigerant pipes.
 - a. Upper side.

b. Rear side.


Open the Knock-out hole

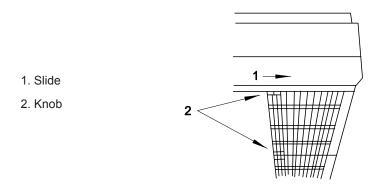


5 Install the pipes through it and seal them using the insulation supplied, as indicated below.

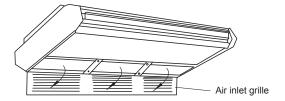

1	Sealing plate supplied (0.8x118x142 mm)
2	Gas refrigerant pipe
3	Liquid refrigerant pipe
4	Seal with insulation
5	Section P.P.
6	M4 screw
7	Sealing plate
8	M4 screw
9	Knock-out hole

3.5.5 RPC-(1.5-6.0)FSN3E - Ceiling type

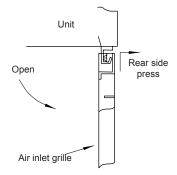
Refrigerant pipe installation


The correct position for the refrigerant pipe connection is shown below. The refrigerant piping can be connected to the top or rear of the unit.

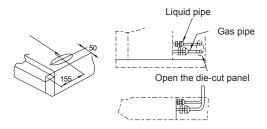
Each part has a die-cut hole as is indicated in chapter "2. Unit installation".

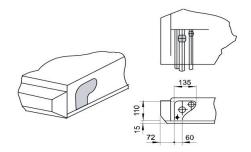


The piping must be installed from the bottom of the unit.

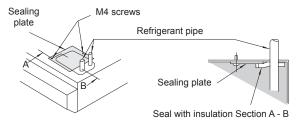

1 Remove the air inlet grille and slide the buttons on the grille backwards.

2 Open the air inlet grille

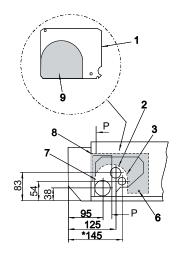

3 Push and slide the air inlet grille backwards and open it.



- 4 Remove the die-cut panel from the required part of the unit to install the refrigerant pipes.
 - a. Upper side.


b. Rear side.

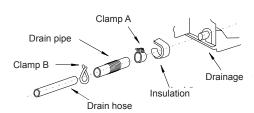
Open the Knock-out hole

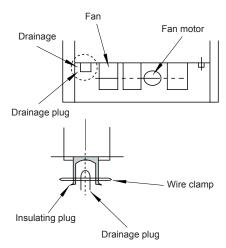


- 5 Install the pipes through it and seal them using the insulation supplied, as indicated below.
 - a. Upper side.

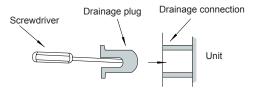
b. Rear side.

1	Sealing plate supplied (0.8x118x142 mm)
2	Gas refrigerant pipe
3	Liquid refrigerant pipe
4	Seal with insulation
5	Section P.P.
6	M4 screw
7	Sealing plate
8	M4 screw
9	Knock-out hole

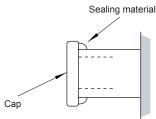

♦ Drain pipe installation


The normal direction for connecting the drain hose is on the right side (when the unit is seen from the outlet grille side). The connection can be made from the left side if there are construction elements of the building around it.

Connection on the right-hand side


- 1 Insert the drain pipe in the clamp "A".
- 2 Push the drain hose towards the boss until it reaches the end of the pan.
- 3 Tighten the screw on the wire clamp to secure the pipe around the drain connection without causing water leaks.
- 4 Insulate the drain hose around the wire clamp to avoid condensation.
- 5 Insert the drain pipe into the drain hose and secure it using the wire clamp "B".

Connection on the left-hand side



- 1 Remove the plug from the drain hose by cutting the securing clip.
- 2 Remove the insulating material.
- 3 Remove the drain plug and insert the pipe into the wire clamp.
- 4 Insert the drain plug into the right-hand boss using a screwdriver.

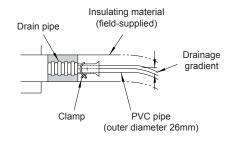
Seal the connection using waterproof chloride sealing material and secure it with the pin.

5 Place the insulating material around the drain connection.

Drain hose connection

The correct position for the drain hose connection is shown below.

Prepare a polyvinyl chloride (PVC) pipe with an outer diameter of 26mm.


The drain hose must have a gradient of 1% (1/100) to 4% (1/25).

The drain hose cannot be installed on an upwards line, not even on one section of the installation. In this case, the condensate water accumulates at the lowest point immediately before the raised section of the installation.

Seal the connection using waterproof chloride sealing material.

Insulate the connection part carefully.

Secure the drain pipe to the connection part using the clamp supplied.

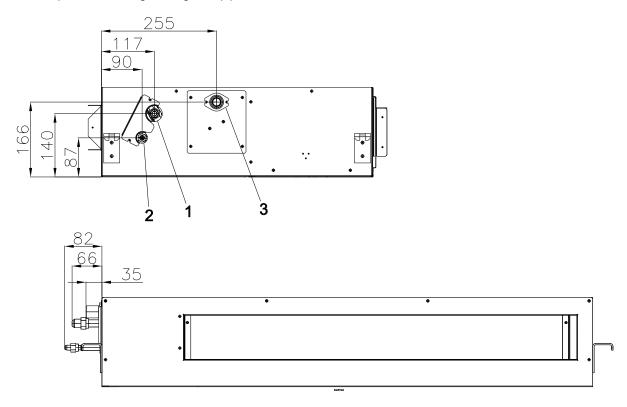
⚠ CAUTION

- Do not apply too much force when making the drain hose connection as this could damage it.
- Do not use bent or twisted drain pipes as these will cause water leaks.

Insulate the drain pipe and suspend it individually as indicated in the figure.

⚠ CAUTION

- Do not apply adhesive between the drain hose connection and the drain hose.
- Do not install the condensate discharge pipe next to the gas refrigerant pipes. Any accumulated water could freeze and block the discharge system.



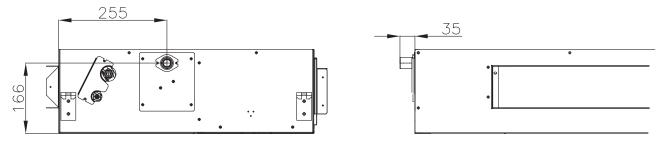
Check the correct working order of the drainage system.

3.5.6 RPI-(0.6-1.5)FSN4E - Ducted indoor unit

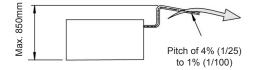
♦ Refrigerant pipe installation

The correct position for the gas refrigerant pipe connection is shown below.

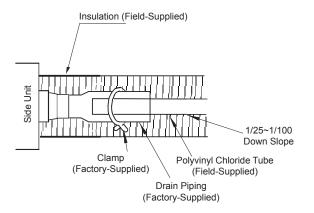
1	Gas piping connection
2	Liquid piping connection
3	Drain piping


Models	Gas pipe mm (inches)	Liquid pipe mm (inches)
RPI	Ø12.7 (1/2)	Ø6.35 (1/4)

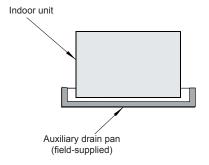
When installing the pipes, leave enough space for maintenance work in the electrical box of the unit.


♦ Drain pipe installation

The correct position for the drain hose connection is shown below.

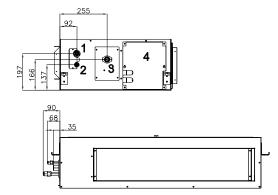


Prepare a polyvinyl chloride (PVC) pipe with an outer diameter of 32 mm.


Fasten the tubing to the drain hose with an adhesive and the factory-supplied clamp. The drain piping must be performed with a down-slope pitch of 1/25 to 1/100.

Insulate the drain pipe after connecting the drain hose.

If the relative humidity of the inlet air or the ambient air exceeds 80% in the place where the unit is installed, fit an auxiliary drain pan (fieldsupplied) below the indoor unit, as indicated in the figure.

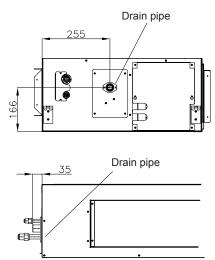


3.5.7 RPI-(2.0-6.0)FSN4E - Ducted indoor unit

♦ Refrigerant pipe installation

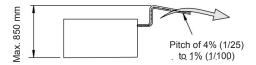
The correct position for the refrigerant pipe connection is shown below.

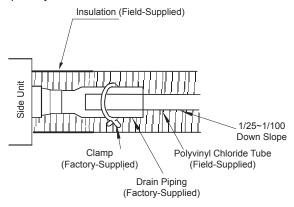
- 1 Gas pipe
- 2 Liquid pipe
- 3 Drain hose
- 4 Electrical box


Models	Gas pipe mm (inches)	Liquid pipe mm (inches)
RPI-2.0FSN4E		Ø6.35 (1/4)
RPI-(2.5/3.0)FSN4E	Ø15.88 (5/8)	GO 52 (2/0)
RPI-(4.0-6.0)FSN4E		Ø9.52 (3/8)

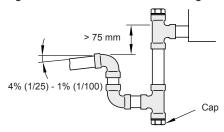
When installing the pipes, leave enough space for maintenance work in the electrical box of the unit.

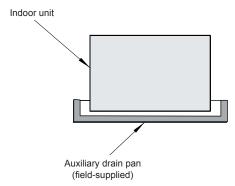
♦ Drain pipe installation


The correct position for the drain hose connection is shown below.



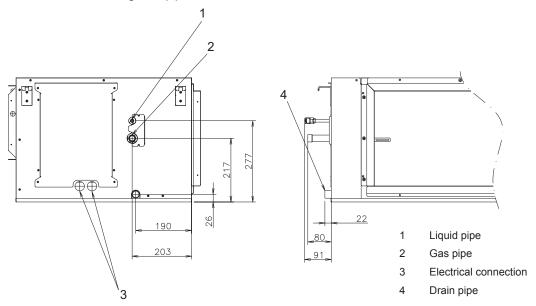
Prepare a polyvinyl chloride (PVC) pipe with an outer diameter of 32 mm.


Fasten the tubing to the drain hose with an adhesive and the factory supplied clamp. The drain piping must be performed with a down-slope pitch of 1/25 to 1/100.


Then insulate the drain hose appropriately.

Connect a trap to the drain hose at the angle indicated, as indicated in the figure (for RPI-(8.0/10.0)FSN3E).

If the relative humidity of the inlet air or the ambient air exceeds 80% in the place where the unit is installed, fit an auxiliary drain pan (fieldsupplied) below the indoor unit, as indicated in the figure.



3.5.8 RPI-(8.0/10.0)FSN3E-(f) - Ducted indoor unit

♦ Refrigerant pipe installation

The location of the refrigerant pipe connections are shown below.

Model	Gas pipe mm (inches)	Liquid pipe mm (inches)
RPI-8.0FSN3E(-f)	Ø19.05 (3/4)	Ø9.52 (3/8)
RPI-10.0FSN3E(-f)	Ø22.2 (7/8)	Ø9.52 (3/8)

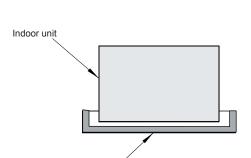
When installing the pipes, leave enough space for maintenance work in the electrical box of the unit.

♦ Drain pipe installation

For condense draining, prepare a polyvinyl chloride pipe with a Ø25mm (outer diameter).

Fasten the field supplied pipe to the drain hose with adhesive.

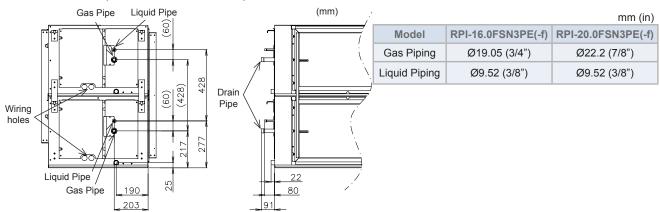
The drain piping should be performed with a down-slope pitch of 1/25 to 1/100.


Connect a syphon, as shown at the figure below.

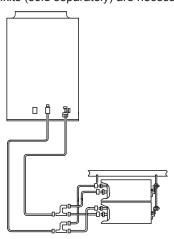
- Keep Electrical Box and Drain Pipe connection free of refrigerant pines
- If the relative humidity of the inlet air or the ambient air exceeds 80% in the place where the unit is installed, fit an auxiliary drain pan (field-supplied) below the indoor unit, as indicated in the figure.

It is very important the syphon installation in order to guarantee the proper condensate draining.

Plug



3.5.9 RPI-(16.0/20.0)FSN3PE(-f) - Ducted indoor unit


♦ Refrigerant pipe connection

The location of Liquid, Gas and the Drain Pipe connection is shown below.

Required multi kits

The following multikits (sold separately) are necessary to interconnect piping between outdoor and indoor unit:

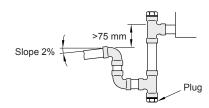
Indoor Unit	Multikit reference
RPI-16.0FSN3PE(-f)	E162SN3
RPI-20.0FSN3PE(-f)	E242SN3

(Picture for illustrative purpose only)

Drain pipe installation

For condense draining, prepare a polyvinyl chloride pipe with a Ø25mm (outer diameter).

Fasten the field supplied pipe to the drain hose with adhesive.


The drain piping should be performed with a down-slope pitch of 1/25 to 1/100.

Connect a syphon, as shown at the figure below.

Keep Electrical Box and Drain Pipe connection free of refrigerant pipes.

CAUTION

- It is very important the syphon installation in order to guarantee the proper condensate draining.
- Do not create an upper-slope or rise for the drain piping, since drain water will flow back to the unit and leakage to the room will occur when the unit operation is stopped.
- Do not connect the drain pipe with sanitary or sewage piping or any other drainage piping.
- When the common drain piping is connected with other indoor units, the connected position of each indoor unit must be higher than the common piping. The pipe size of the common drain pipe must be large enough according to the unit size and number of unit.
- Drain piping will require insulating if the drain is installed in a location where condensation forming on the outside of drain pipe may drop and cause damage. The insulation for the drain pipe must be selected to insure vapour sealing and prevent condensation formina
- Drain trap should be installed next to indoor unit. This trap must be designed to good practice and be checked with water (charged) and tested for correct flow. Do not tie or clamp the drain pipe and refrigerant pipe together.

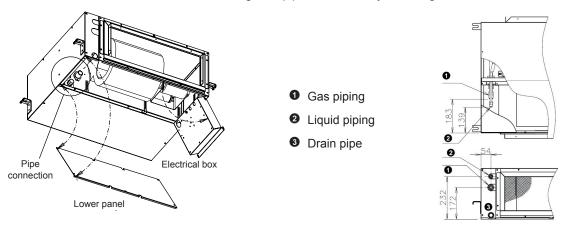
i NOTE

- (*)Y distance must be higher than X.
- Install drainage in accordance with national and local codes.

After performing drain piping work and electrical wiring, check to ensure that water flows smoothly as in the following procedure:

Checking Unit without drain-up mechanism

- Pour approximately 1.8 litres of water into the drain pan (in each unit).
- Check to ensure that the water flows smoothly or whether no water leakage occurs. When water cannot be found at the end of the drain piping, pour another approximately 1.8 litres of water into the drain pan of each unit.


i NOTE

- Pay attention to the thickness of the insulation when the left side piping is performed. If it is too thick, piping can not be installed in
- If there is excessive clearance between the drain pipe connection and the drain hose, add a sealing material between both parts in order to fit and not deform the drain hose.

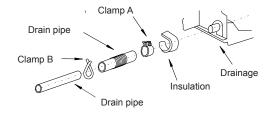
3.5.10 RPIM-(0.6-1.5)FSN4E(-DU) - Ducted indoor unit

♦ Refrigerant pipe installation

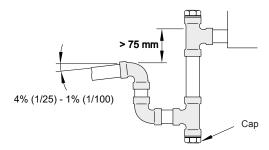
The pipe connections are inside the unit. Access the refrigerant pipe connection by removing the fan cover on the unit.

The correct position for the refrigerant pipe connection is shown below.

Models	Gas pipe mm (inches)	Liquid pipe mm (inches)
RPIM(0.6-1.5)FSN4E	Ø12.70 (1/2)	Ø6.35 (1/4)

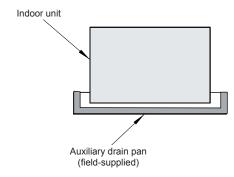


When installing the pipes, leave enough space for maintenance work in the electrical box of the unit.

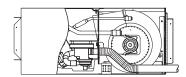

Drain pipe installation

Drain hose installation:

- 1 Insert the drain hose in the clamp "A".
- 2 Push the drain hose towards the boss until it reaches the end of the pan.
- 3 Tighten the screw on the wire clamp to secure the pipe around the drain connection without causing water leaks.
- 4 Insulate the drain hose around the wire clamp to avoid condensation.
- 5 Insert the drain pipe into the drain hose and secure it using the wire clamp "B".

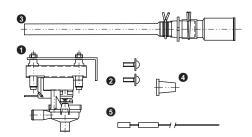


Connect a trap to the drain hose at the angle indicated, as indicated in the figure.

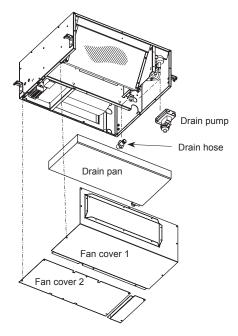


If the relative humidity of the inlet air or the ambient air exceeds 80% in the place where the unit is installed, fit an auxiliary drain pan (fieldsupplied) below the indoor unit, as indicated in the figure.

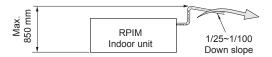
Drainage installation for (-DU) units



Optional drainage kit (for units without drain pump)

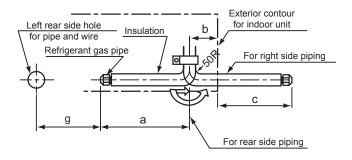

For special cases those installation design finally requires draining up (and was not desgined from the beginning of the installation project), it is available the optional drain kit.

- Orain pump
- 2 Screw (2 units)
- 3 Drain hose
- A Rubber plug
- 6 Drain pump wire


Optional drain up mechanism kit

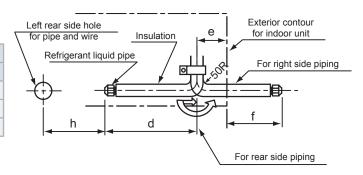
Kit installation:

Maximum water head height in case of units with drain pump (-DU models or units with drain up mechanism kit).

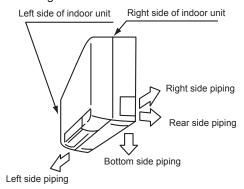

3.5.11 RPK-(0.6-4.0)FSN(H)3M - Wall type

♦ Refrigerant pipe installation

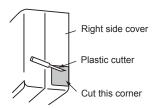
Gas pipe connection


The position of the gas pipe connection is possible in all directions (above, left or right).

Model	Measurements (mm)			
Wodei	а	b	С	g
RPK-(0.6-1.0)FSN(H)3M	395	107	288	243
RPK-1.5FSN(H)3M	395	107	288	262
RPK-(2.0-4.0)FSN3M	480	141	339	471


Liquid pipe connection

Model	Measurements (mm)				
Model	d	е	f	h	
RPK-(0.6-1.0)FSN(H)3M	450	107	343	188	
RPK-1.5FSN(H)3M	450	107	343	207	
RPK-(2.0-4.0)FSN3M	540	141	399	418	


Direction of piping connection

Direction of piping connection is shown in the figure below.

Right Side Piping

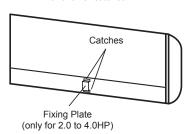
Cut the corner by plastic cutter as shown below and remove sharp edge completely.

Left Side Piping


Cut the corner by plastic cutter as same as the right side piping. (Perform this procedure before the indoor unit is hung onto the wall).

- a. When the left side piping is selected, the drain pipe outlet should be changed from right side to left side. If it is not changed to left side and the suspension bracket is fixed onto the fall with right down slope, the drain water flows back so that may cause water leakage from the drain pan.
- **b.** For the pipe installation embedded in the wall, the positions of piping are as follows.

i NOTE


For RPK-(0.6-1.5)FSN(H)3M, it is recommended to connect the piping at the right rear side of the body to avoid the sound from the refrigerant running through.

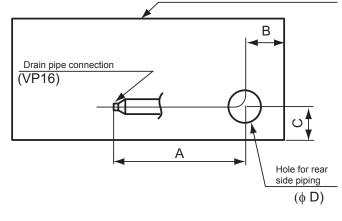
			U	nit: mm
Model	Liquid piping			
wodei	а	b	С	Ød
RPK-(0.6-1.0)FSN(H)3M	45	638	107	Ø65
RPK-1.5FSN(H)3M	45	657	107	Ø65
RPK-(2.0-4.0)FSN3M	42	951	141	Ø80

Fix the fixing plate for pipes (accessory) as shown in the figure below.

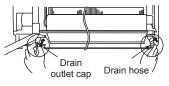
Fix the fixing plate onto upper and lower catches.

Models	Models Gas pipe mm (inches)	
RPK-(0.6-1.5)FSN(H)3M	Ø12.70 (1/2)	Ø9.52 (3/8) (FSNH3M) Ø6.35 (1/4) (FSN3M)
RPK-2.0FSN3M	Ø15.88 (5/8)	Ø6.35 (1/4)
RPK-(2.5-4.0)FSN3M	Ø15.88 (5/8)	Ø9.52 (3/8)

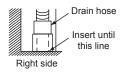
Drain pipe installation



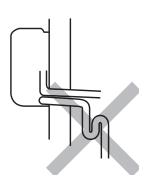
The normal direction for connecting the drain hose is on the right side (when the unit is seen from the outlet grille side). The connection can be made from the left side or from the rear if there are construction elements of the building around it.


Unit: mm

Model	Α	В	С	ØD
RPK-(0.6-1.5)FSN(H)3M	568	107	45	65
RPK-(2.0-4.0)FSN3M	550	141	42	80

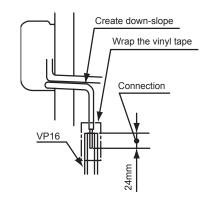

When the left side drain piping connection is performed, remove the cap of left side drain pipe, and then attach this cap to the right side drain pipe in order to change drain piping connection from right side to left side. If the cap is fixed tightly, remove the cap by using the plier. (Perform this procedure before the indoor unit is hung onto the wall.)

Exterior contour for indoor unit



Drain outlet cap Insert until this line Left side

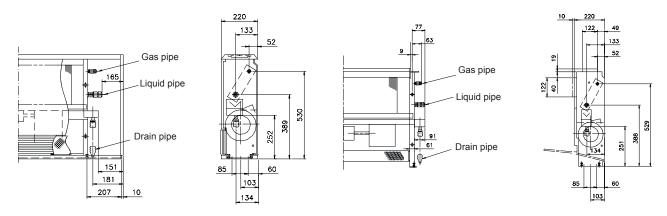
Provide a vinyl chloride pipe, VP16.


When the drain hose is used, do not create rising part or twist.

Wrap surely the vinyl tape around the drain piping connection.

Insulate surely the drain pipe after the vinyl chloride pipe connection is completed.

- 1 Do not connect the drain pipe with sanitary or sewage piping or any other drainage piping.
- 2 After the drain piping work is completed, check that water flows smoothly by pouring water into the drain pan by a
- 3 Wrap the field-supplied insulation around the drain pipe running through the indoor.
- 4 When installing the pipe, do not tie the drain pipe and refrigerant pipe together.


A CAUTION

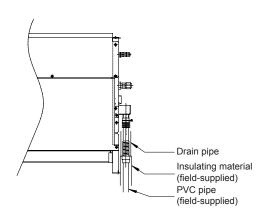
- Pay attention not to splash water to the electrical parts such as the fan motor or thermistors.
- When the common drain piping is connected with other indoor units, the connected position of each indoor unit must be higher than the common piping. The size of common drain pipe must be large enough according to the unit size and number of units.

3.5.12 RPF(I)-(1.0-2.5)FSN2E - Floor type

♦ Refrigerant pipe installation

The correct position for the refrigerant pipe connection is shown below.

Models	Gas pipe mm (inches)	Liquid pipe mm (inches)	Drain hose mm
RPF(I)-(1.0-1.5)FSN2E	Ø12.70 (1/2)		
RPF(I)-2.0FSN2E	Ø4E 00 (E/0)	Ø6.35 (1/4)	Ø18.5
RPF(I)-2.5FSN2E	Ø15.88 (5/8)	Ø9.52 (3/8)	


♦ Drain pipe installation

The correct position for the drain hose connection is shown below.

Prepare a polyvinyl chloride (PVC) pipe with an outer diameter of 18.5 mm.

Secure the pipe with the adhesive supplied.

Insulate the drain hose after connecting the pipe, as indicated in the figure.

3.6 Refrigerant charge

For matters relating to the refrigerant charge in the installation, consult the Technical Catalogue and Service Manual corresponding to the outdoor units of the UTOPIA or SET FREE systems.

3.7 Precautions in the event of refrigerant leaks

DANGER

Fitters and the designers of the installations must strictly observe local and national legislation, and local codes regarding safety requirements in the event of refrigerant leaks.

3.7.1 Maximum permissible concentration of hydrofluorocarbon (HFC)

The R410A refrigerant gas, used in the equipment, is non-flammable and non-toxic.

DANGER

In the event of a leak, the gas will spread around the room, displacing the air, and could therefore result in asphyxia.

According to Standard EN378-1, the maximum permissible concentration of HFC R410A gas in the air is 0.44 kg/m³. Therefore, effective measures must be adopted to maintain the concentration of R410A gas in the air below 0.44 kg/m³ in the event of a leak.

3.7.2 Calculation of the concentration of refrigerant

- 1 Calculate the total quantity of refrigerant R (kg) charged in the system; to do so, connect all the indoor units of the rooms in which you wish to have air conditioning.
- 2 Calculate the volume $V(m^3)$ of each room.
- 3 Calculate the refrigerant concentration C (kg/m³) of the room in accordance with the following formula:

R/V = C

R: total quantity of refrigerant charged (kg).

V: volume of the room (m3).

C: refrigerant concentration (= 0.44 kg/m³ for R410A gas).

3.7.3 Countermeasures in the event of refrigerant leaks

The room should have the following characteristics in case of a leak of refrigerant:

- 1 Opening without shutter to permit the circulation of fresh air in the room.
- 2 Opening without door measuring 0.15%, or greater, of the floor surface.
- 3 A fan with a capacity of at least 0.4 m³/minute per ton of Japanese refrigeration (=volume moved by the compressor / 5.7 m³/h) or above, connected to a gas sensor in the air conditioning system that uses refrigerant.

🔼 DANGER

Special attention should be given to areas where the refrigerant may be deposited and stay in the room, such as basements or similar, as the gas is heavier than air.

Electrical and control settings

Index

4.1	Unit electrical wiring and connection	132
	4.1.1 Wiring size	132
	4.1.2 Minimum requirements of the protection devices	133
	4.1.3 Transmission wiring between outdoor and indoor unit	134
	4.1.4 Electrical connection of RCI units	134
	4.1.5 Electrical connection of RCIM units	136
	4.1.6 Electrical connection of RCD units	138
	4.1.7 Electrical connection of RPC units	140
	4.1.8 Electrical connection of RPI units	141
	4.1.9 Electrical connection of RPIM units	145
	4.1.10 Electrical connection of RPK units	147
	4.1.11 Electrical connection of KPI units	152
	4.1.12 Econofresh electrical wiring connection	153
	4.1.13 DX-Interface electrical wiring	154
	4.1.14 Network system connection (CS-NET WEB)	157
	4.1.15 Connection between units H-LINK and H-LINK II	157
4.2	Setting of DIP switches and RSW switches	158
	4.2.1 Location of DIP switches and RSW switches	159
	4.2.2 Functions of the DIP switches and RSW switches (Indoor units)	161
	4.2.3 Functions of the DIP switches and RSW switches (KPI units)	164
	4.2.4 Functions of the DIP switches and RSW switches (Econofresh kit)	166
	4.2.5 Functions of the DIP switches and RSW switches (DX-Interface)	166
4.3	Wiring diagrams for indoor units and complementary systems	169
	4.3.1 Wiring diagrams for indoor units	169
	4.3.2. Wiring diagrams for complementary systems	182

4.1 Unit electrical wiring and connection

Check to ensure that the field supplied electrical components (mains power switches, circuit breakers, wires, connectors and wire terminals) have been properly selected according to the electrical data indicated on this chapter and they comply with national and local codes. If it is necessary, contact with your local authority in regards to standards, rules, regulations, etc.

4.1.1 Wiring size

Use wires which are not lighter than the polychloroprene sheathed flexible cord (code designation 60245 IEC 57).

Indoor units

Model	Power supply	Maximum current (A)	Power supply cable size EN60 335-1	Transmitting cable size EN60 335-1
Indoor units (0.6-6.0) HP	1~ 230V 50Hz	5.0	2 x 0.75 mm ² +GND	
RPI-(8.0/10.0)FSN3E(-f)	or 1~ 220-240V 50Hz	10.0	2 x 1.5 mm ² +GND	2v 0.75 mm²
RPI-16.0FSN3PE(-f)	(depending on	16.2	2 x 4.0 mm ² +GND	2x 0.75 mm ²
RPI-20.0FSN3PE(-f)	model)	17.7	2 X 4.0 IIIIII-+GND	

KPI units

Model	Power supply	Maximum current (A)	Power supply cable size EN60 335-1
KPI-252E4E		4.0	2 x 1.0 mm ² +GND
KPI-502(E/X)4E		4.0	2 x 1.0 mm ² +GND
KPI-802(E/X)4E		4.0	2 x 1.0 mm ² +GND
KPI-1002(E/X)4E	1~ 230V 50Hz	8.0	2 x 1.5 mm ² +GND
KPI-1502E4E	I-1502E4E	8.0	2 x 2.5 mm ² +GND
KPI-2002E4E		8.0	2 x 2.5 mm ² +GND

◆ DX-Interface

Model	Power supply	Maximum current (A)	Power supply cable size EN60 335-1
EXV-(2.0-10.0)E2	1~ 230V 50Hz	5.0	2 x 0.75 mm ² +GND

4.1.2 Minimum requirements of the protection devices

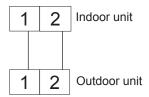
A CAUTION

- Ensure specifically that there is an Earth Leakage Breaker (ELB) installed for the units.
- If the installation is already equipped with an Earth Leakage Breaker (ELB), ensure that its rated current is large enough to hold the current of the units.

- Electric fuses can be used instead of magnetic Circuit Breakers (CB). In that case, select fuses with similar rated values as the CB.
- The Earth Leakage Breaker (ELB) mentioned on this manual is also commonly known as Residual Current Device (RCD) or Residual Current Circuit Breaker (RCCB).
- The Circuit Breakers (CB) are also known as Thermal-Magnetic Circuit Breakers or just Magnetic Circuit Breakers (MCB).

Indoor units

Model	Power supply	Maximum current (A)	CB (A)	ELB (nº poles/A/mA)
Indoor units (0.6-6.0) HP	1. 220\/ 50 -	5.0	6	
RPI-(8.0/10.0)FSN3E(-f)	1~ 230V 50Hz or 1~ 220-240V 50Hz (depending on model)	10.0	10	2/40/20
RPI-16.0FSN3PE(-f)		16.2	20	2/40/30
RPI-20.0FSN3PE(-f)		17.7	20	


CB: Circuit breaker; ELB: Earth leakage breaker

♦ KPI units

Model	Power source	Maximum current (A)	CB (A)	ELB (nº poles/A/mA)
KPI-252E4E		4.0	6	
KPI-502(E/X)4E	1~ 230V50Hz	4.0	6	
KPI-802(E/X)4E		4.0	6	2/40/20
KPI-1002(E/X)4E		8.0	10	2/40/30
KPI-1502E4E		8.0	16	
KPI-2002E4E		8.0	16	

4.1.3 Transmission wiring between outdoor and indoor unit

- · The transmission is wired to terminals 1-2.
- . The H-LINK II wiring system requires only two transmission cables that connect the indoor unit and the outdoor unit.

- Use twist pair wires (0.75 mm²) for operation wiring between outdoor unit and indoor unit. The wiring must consist of 2-core wires (Do not use wire with more than 3 cores).
- Use shielded wires for intermediate wiring to protect the units from noise interference, with a length of less than 300m and a size in compliance with local codes.
- In the event that a conduit tube for field-wiring is not used, fix rubber bushes to the panel with adhesive.

Ensure that the transmission wiring is not wrongly connected to any live part that could be damaged the PCB.

4.1.4 Electrical connection of RCI units

Work prior to the electrical connection

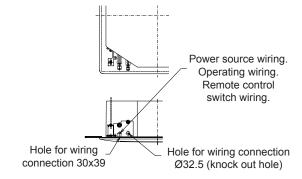
- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- · For further information, always consider the current regulations in the country where the unit is to be installed.

- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside
 the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire.
 Check that the cables are firmly secured to the connection terminals.

Electrical connection

Check that the power supply for the RCI indoor unit is 230 V. If not, replace the CN connectors on the TF transformers in the electrical box.


Make the connection between the indoor unit and the air panel.

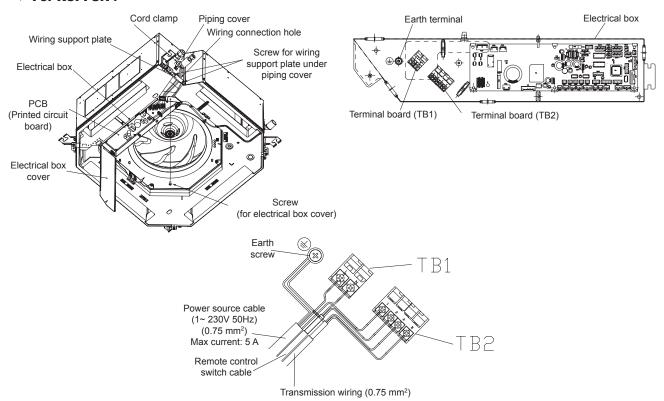
- To prevent the screws from falling from the terminal strip, do not remove them completely, hold onto the terminal and check that the screw is secure through the hole.
- Use the following screws for the terminal strip:
 - M4 screw for the power supply.
 - M3.5 screw for the communication line.

Follow the steps below to connect the remote control cable or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B of the terminal strip (TB1).
- 3 Tighten the screw on terminals A and B.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the terminal strip (TB1):

- To connect a power supply to neutral, connect the cables to terminals L1 and N on the terminal strip (TB1).
- To connect a power supply without neutral: make the connection to terminals L1 and L2 on the terminal strip (TB1).
- 1 Where necessary, loosen the screws on terminals L1 and N or L1 and L2, as applicable, on the terminal strip (TB1).
- 2 Connect the power cables to terminals L1 and N or L1 and L2, as applicable.
- 3 Tighten the screws on terminals L1 and N or L1 and L2, as applicable.
- 4 Check that the cables are correctly secured.


Follow the steps below to connect the communication cables between the outdoor and indoor unit to the terminal strip (TB1):

- 1 Where necessary, loosen the screws on terminals 1 and 2 on the terminal strip (TB1).
- 2 Connect the communication cables to terminals 1 and 2.
- 3 Tighten the screw on terminals 1 and 2.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the earthing cables to the earthing connection in the electrical box:

- Where necessary, loosen the screw on the earthing connection in the electrical box.
- 2 Connect the shielded part of the power supply earth wire to the earth connection.
- 3 Connect the shielded part of the signal earth wire to the earth connection.
- 4 Tighten the screw on the earthing connection in the electrical box.
- 5 Check that the cables are correctly secured.

◆ For RCI-FSN4

Firmly secure the cables using a tie inside the electrical box.

Cover the cables and the hole using a sealant to protect them from condensation and insects.

Test runs

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off
 via the thermostat. The three-minute compressor protection is not enabled during the test.
- · Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

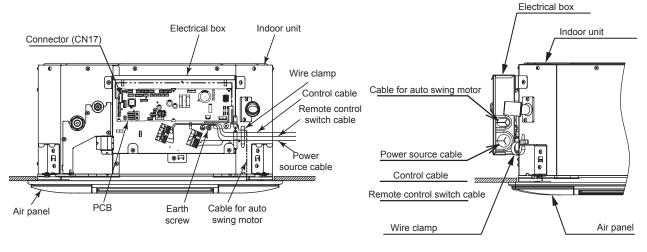
4.1.5 Electrical connection of RCIM units

Before proceeding to any electrical connection

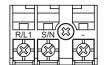
- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- For further information, always consider the current regulations in the country where the unit is to be installed.

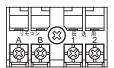
⚠ CAUTION


- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside
 the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire.
 Check that the cables are firmly secured to the connection terminals.

Electrical connection


Make the connection between the indoor unit and the air panel.

- To prevent the screws from falling from the terminal box, do not remove them completely, hold onto the terminal and check that the screw is secure through the hole in the terminal.
- Use the following screws for the terminal box:
 - M4 screw for the power supply.
 - M3.5 screw for the operating line.



Terminal Board 1

Terminal board for Power source cable

Terminal board for Control source cable

Follow the steps below to connect the remote control cable or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B of the terminal strip (TB2).
- 3 Tighten the screw on terminals A and B.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the terminal strip (TB1):

∠!\ CAUTION

- To connect a power supply with neutral, connect the cables to terminals L1 and N on the terminal strip (TB1).
- To connect a power supply without neutral: make the connection to terminals L1 and L2 on the terminal strip (TB1).
- Where necessary, loosen the screws on terminals L1 and N or L1 and L2, as applicable, on the terminal strip (TB1). 1
- 2 Connect the power cables to terminals L1 and N or L1 and L2, as applicable.
- 3 Tighten the screws on terminals L1 and N or L1 and L2, as applicable.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the communication cables between the outdoor and indoor unit to the terminal strip (TB2):

- Where necessary, loosen the screws on terminals 1 and 2 on the terminal strip (TB2).
- 2 Connect the communication cables to terminals 1 and 2.
- 3 Tighten the screw on terminals 1 and 2.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the earth wire to the earth connection in the electrical box:

- Where necessary, loosen the screw on the earthing connection in the electrical box.
- 2 Connect the shielded part of the power supply earth wire and the signal wiring earth wire to the earth connection.
- 3 Tighten the screw on the earthing connection in the electrical box.
- 4 Check that the shielded part of the earthing cables are correctly secured.

Firmly secure the cables using a tie inside the electrical box.

Cover the cables and the hole using a sealant to protect them from condensation and insects.

Test runs

CAUTION

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

4.1.6 Electrical connection of RCD units

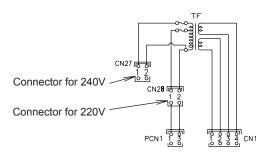
Work prior to the electrical connection

- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

iINOTE

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- For further information, always consider the current regulations in the country where the unit is to be installed.

CAUTION


- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire. Check that the cables are firmly secured to the connection terminals.

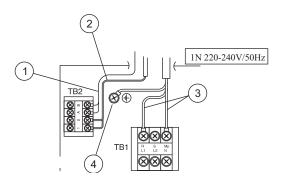
Electrical connection

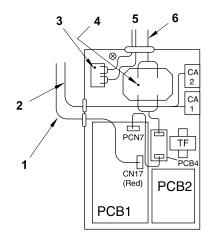
Check that the power supply for the RCD indoor unit is 220 - 240 V. If not, replace connectors CN27 and CN28 on the TF transformers in the electrical box.

Follow the steps below to connect the remote control cable or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B of the terminal strip (TB2).
- 3 Tighten the screw on terminals A and B.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the terminal strip (TB1):

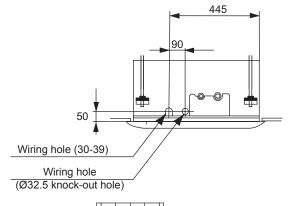

- 1 Where necessary, loosen the screws on terminals L1 and N on the terminal strip (TB1)
- 2 Connect the power cables to terminals L1 and N.
- 3 Tighten the screws on terminals L1 and N.
- 4 Check that the cables are correctly secured.

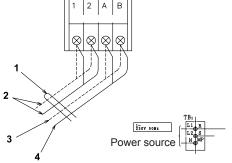

Follow the steps below to connect the communication cables between the outdoor and indoor unit to the terminal strip

- 1 Where necessary, loosen the screws on terminals 1 and 2 on the terminal strip (TB2).
- 2 Connect the communication cables to terminals 1 and 2.
- Tighten the screw on terminals 1 and 2.
- 4 Check that the cables are correctly secured.

N°	Part
1	Control Cable
2	Remote Control Cable
3	Power Source Cable
4	Earth Screw

Nº	Part
1	Connector for the swing louver motor
2	Fan motor connector
3	Terminal strip (TB2)
4	Terminal strip (TB1)
5	Wiring
6	Power wiring





Follow the steps below to connect the earth wire to the earth connection in the electrical box:

- 1 Where necessary, loosen the screw on the earthing connection in the electrical box.
- 2 Connect the shielded part of the power supply earth wire and the signal wiring earth wire to the earth connection.
- 3 Tighten the screw on the earthing connection in the electrical box.
- Check that the shielded part of the earthing cables are correctly secured.

N°	Part
1	Tie
2	Communication wiring between the indoor and outdoor units and between indoor units
3	Operating control wiring. In the case of group operations using a remote control
4	Remote control wiring

Test runs

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

4.1.7 Electrical connection of RPC units

Work prior to the electrical connection

- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- Wait 5 minutes after turning off the power supply switches.
- Check that the fans on the indoor and outdoor units are at a standstill before starting work.

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- For further information, always consider the current regulations in the country where the unit is to be installed.

- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire. Check that the cables are firmly secured to the connection terminals.

Electrical connection

Check that the power supply for the RPC indoor unit is 230 V. If not, replace connectors CN on the TF transformers in the electrical box.

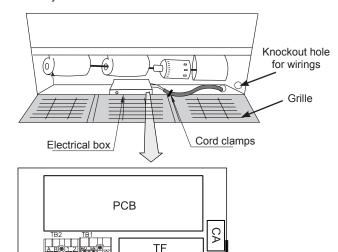
- To prevent the screws from falling from the terminal box, do not remove them completely, hold onto the terminal and check that the screw is secure through the hole in the terminal.
- Use the following screws for the terminal box:
 - M4 screw for the power supply.
 - M3.5 screw for the operating line.

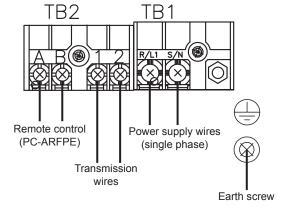
Follow the steps below to connect the remote control cable or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B of the terminal strip (TB).
- 3 Tighten the screw on terminals A and B.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the terminal strip (TB):

- 1 Where necessary, loosen the screws on terminals L1 and N on the terminal strip (TB).
- 2 Connect the power cables to terminals L1 and N.
- 3 Tighten the screws on terminals L1 and N.
- 4 Check that the cables are correctly secured.


Follow the steps below to connect the communication cables between the outdoor and indoor unit to the terminal strip


- 1 Where necessary, loosen the screws on terminals 1 and 2 on the terminal strip (TB).
- 2 Connect the communication cables to terminals 1 and 2.
- 3 Tighten the screw on terminals 1 and 2.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the earth wire to the earth connection in the electrical box:

- Where necessary, loosen the screw on the earthing connection in the electrical box.
- 2 Connect the shielded part of the power supply earth wire and the signal wiring earth wire to the earth connection.
- Tighten the screw on the earthing connection in the electrical box.
- 4 Check that the shielded part of the earthing cables are correctly secured.

Nº	Part
1	Electrical box
2	Tie
3	Die-cut wiring hole
4	Grille
5	Remote control wiring (optional)
6	Communication wiring
7	Power wiring

CAUTION

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

4.1.8 Electrical connection of RPI units

Work prior to the electrical connection

- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- For further information, always consider the current regulations in the country where the unit is to be installed.

⚠ CAUTION

- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire. Check that the cables are firmly secured to the connection terminals.

Electrical connection

Check that the power supply for the RPI indoor unit is 230 V. If not, replace connectors CN on the TF transformers in the

The service panel for the indoor unit fan motor is at the bottom of the unit and the electrical box service panel is on the right-hand side.

Open the service panel.

Cut the centre of the rubber bushing in the wiring connection hole.

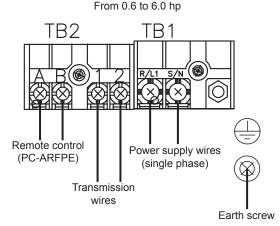
- To prevent the screws from falling from the terminal box, do not remove them completely, hold onto the terminal and check that the screw is secure through the hole in the terminal.
- Use the following screws for the terminal box:
 - M4 screw for the power supply.
 - M3.5 screw for the operating line.

Follow the steps below to connect the remote control cable or the optional extension wire:

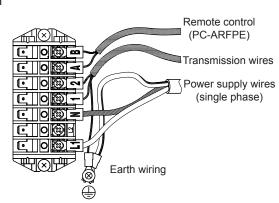
- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B of the terminal strip (TB).
- 3 Tighten the screw on terminals A and B.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the terminal strip (TB):

- 1 Where necessary, loosen the screws on terminals L1 and N on the terminal strip (TB).
- 2 Connect the power cables to terminals L1 and N.
- 3 Tighten the screws on terminals L1 and N.
- 4 Check that the cables are correctly secured.

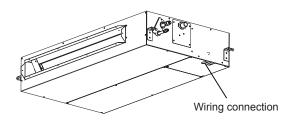

Follow the steps below to connect the communication cables between the outdoor and indoor unit to the terminal strip (TB):

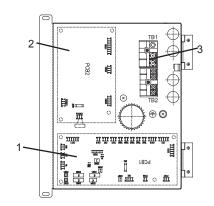
- Where necessary, loosen the screws on terminals 1 and 2 on the terminal strip (TB).
- Connect the communication cables to terminals 1 and 2.
- 3 Tighten the screw on terminals 1 and 2.
- 4 Check that the cables are correctly secured.


Follow the steps below to connect the earth wire to the earth connection in the electrical box:

- 1 Where necessary, loosen the screw on the earthing connection in the electrical box.
- 2 Connect the shielded part of the power supply earth wire and the signal wiring earth wire to the earth connection.
- 3 Tighten the screw on the earthing connection in the electrical box.
- 4 Check that the shielded part of the earthing cables are correctly secured.

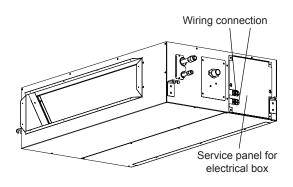
Firmly secure the cables using a tie inside the electrical box.

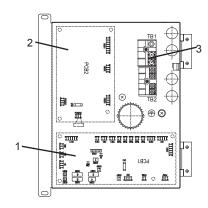

From 8.0 to 20.0 hp



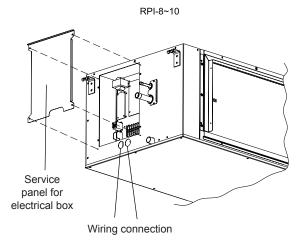
RPI-(0.6-1.5)FSN4E Terminal board location

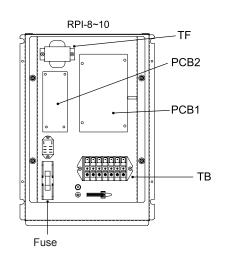
Cover the cables and the hole using a sealant to protect them from condensation and insects.


Nº	Part
1	Printed circuit board 1 (PCB1)
2	Printed circuit board 2 (PCB2)
3	Terminal board (TB)

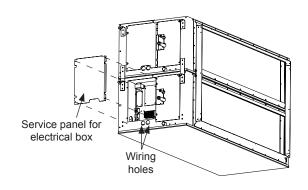


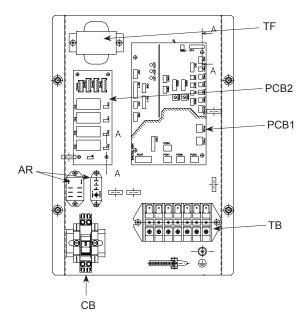
RPI-(2.0-6.0)FSN4E Terminal board connections


I	N°	Part
	1	Printed circuit board 1 (PCB1)
	2	Printed circuit board 2 (PCB2)
	3	Terminal board (TB)



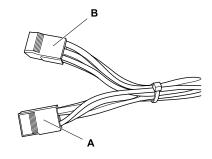
RPI-(8.0/10.0)FSN3E(-f) Terminal board connections


Nº	Part	
PCB1	Printed circuit board	
PCB2	Printed circuit board	
TF	Transformer	
ТВ	Terminal strip	
FUSE	Fuse	



RPI-(16.0/20.0)FSN3PE(-f) Terminal board connections

N°	Part	
PCB1	Printed circuit board 1	
PCB2	Printed circuit board 2	
TF	Transformer	
ТВ	Terminal board	
СВ	Circuit breaker	
AR	Auxiliary relay	


Test runs

The fan motor in RPI-(8.0/10.0)FSN3E(-f) and RPI-(16.0/20.0)FSN3(-f)PE units can be configured in two different ways:

- A: connector CN24 LSP (Low Static Pressure) (factory supplied setting);
- B: connector CN25 HSP (High Static Pressure). .

A CAUTION

Perform the connection with the same settings in both units that make up models RPI-(16.0/20.0)FSN3E; otherwise malfunction may occur, causing damage to the units.

According to the Static Pressure setting (connector CN24 LSP (Low Static Pressure) or CN25 HSP (High Static Pressure)) the fan speed available in the Remote Control Switch are the ones show as example in the following pictures.

Example for RPI-(8.0/10.0)FSN3E(-f):

⚠ CAUTION

- Make sure SP-02 is selected on the remote control for RPI-(0.8-6.0)FSN4E units in the case of short duct installations. To configure SP-02, refer the optional functions C5->"02", low static pressure option. Make sure the low static pressure option (LSP) is selected for RPI (8.0/10.0)FSN3E(-f) units.
- Ensure a minimal resistance is maintained in the duct, as shown in the fan performance graphs. Starting the unit with a duct that is too short causes it to operate outside its accepted operating range.

4.1.9 Electrical connection of RPIM units

Work prior to the electrical connection

- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- Check that the fans on the indoor and outdoor units are at a standstill before starting work.

i NOTE

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- For further information, always consider the current regulations in the country where the unit is to be installed.

∠!\ CAUTION

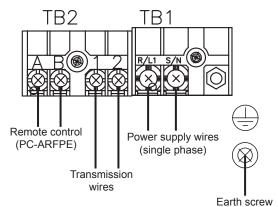
- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire. Check that the cables are firmly secured to the connection terminals.

Electrical connection

Check that the power supply for the RPIM indoor unit is 230 V. If not, replace connectors CN on the TF transformers in the electrical box.

- The service access panel for the indoor unit fan motor is at the bottom of the unit.
- Remove the service access panel.
- Cut the centre of the rubber bushing in the wiring connection hole.

$oldsymbol{i}oldsymbol{i}_\mathsf{NOTE}$


- To prevent the screws from falling from the terminal box, do not remove them completely, hold onto the terminal and check that the screw is secure through the hole in the terminal.
- Use the following screws for the terminal box:
 - M4 screw for the power supply.
 - M3.5 screw for the operating line.

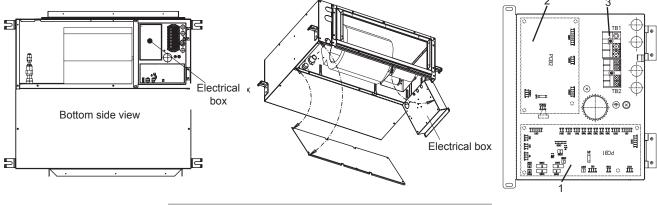
Follow the steps below to connect the remote control cable or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B of the terminal strip (TB1).
- Tighten the screw on terminals A and B.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the terminal strip (TB):

- 1 Where necessary, loosen the screws on terminals L1 and N on the terminal strip (TB).
- 2 Connect the power cables to terminals L1 and N.
- Tighten the screws on terminals L1 and N.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the communication cables between the outdoor and indoor unit to the terminal strip


- 1 Where necessary, loosen the screws on terminals 1 and 2 on the terminal strip (TB).
- 2 Connect the communication cables to terminals 1 and 2.
- Tighten the screw on terminals 1 and 2.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the earth wire to the earth connection in the electrical box:

- 1 Where necessary, loosen the screw on the earthing connection in the electrical box.
- 2 Connect the shielded part of the power supply earth wire and the signal wiring earth wire to the earth connection.
- 3 Tighten the screw on the earthing connection in the electrical box.
- 4 Check that the shielded part of the earthing cables are correctly secured.

Firmly secure the cables using a tie inside the electrical box.

Cover the cables and the hole using a sealant to protect them from condensation and insects.

N°	Part	
1	Printed circuit board 1 (PCB1)	
2	Printed circuit board 2 (PCB2)	
3	Terminal board (TB)	

Test runs

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

4.1.10 Electrical connection of RPK units

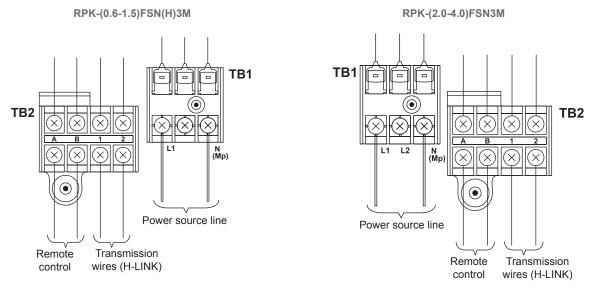
Work prior to the electrical connection

- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- · For further information, always consider the current regulations in the country where the unit is to be installed.

A CAUTION

- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire.
 Check that the cables are firmly secured to the connection terminals.


Electrical connection

A CAUTION

- Make sure that the field-selected electrical components (main power switches, circuit breakers, wires, conduit connectors and wire terminals) have been properly selected according to the electrical data given in "Technical Catalogue". Make sure that the components comply with National Electrical Code (NEC).
- Use the shielded twist pair cable for the control cable between the outdoor unit and the indoor unit, the control cable between indoor units and the remote control switch cable of PC-ARFPE.
- Check to ensure that the power supply voltage is 230V.
- · Check the capacity of the electrical wires. If the power source capacity is too low, the system cannot be started due to the voltage drop.
- · Check to ensure that the earth wire is connected.

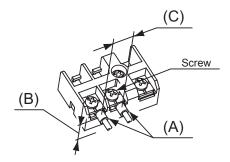
The electrical wiring capacity of the outdoor unit should be referred according to "Installation & Operation Manual" of the outdoor unit. Setting dip switch may be required depending on the combination with the outdoor unit.

1 Connect the power source cables (L1 and N phases (1~ 230V 50Hz)) to the terminal board correctly.

2 Connect the control cables between the indoor unit and the outdoor unit correctly. Check to ensure that the terminal for power source cable (Terminals "L1" to "L1" and "N" to "N" of each terminal board: AC220-240V) between the indoor unit and the outdoor unit coincide correctly. If not, some component will be damaged.

- 3 Use the shielded twist pair cable for control between the outdoor unit and the indoor units. They are connected to the terminals 1 and 2 of the terminal boards. The remote control switch cable is connected to the terminals A and B of each indoor unit terminal board.
- 4 When installing the unit in Australia, connect the both ends of shielded twist pair cable (remote control switch cable and control cable) to the earth as shown below.

- When the total wiring length for control cable between the outdoor unit and the indoor unit and between indoor units is less than 100m, the normal wiring (more than 0.75mm²) except the twist pair cable is available. (except for Australia)
- The total wiring length for the remote control switch can be extended up to 500m. If the total wiring length less than 30m, the normal wiring (0.3mm²) except the twist pair cable is available. (except for Australia)



DANGER

- Tightly secure wirings to the terminal board according to the specified torque. If tightening the terminals is not completed, heat generation, an electric shock or a fire will occur at the terminal connection.
- Make sure that the wires are securely fixed in order not to apply an external force to the terminal connections of the wirings.
 If fixing is not completed, heat generation or a fire will occur.
- Fix the terminals that do not touch to the electrical box surface. If the terminals are closed to the surface, it may cause activation of ELB, heat generation at terminal connection, a fire or an electric shock.

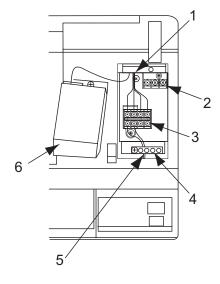
- Do not connect the main power source cables to the control line (Terminals A, B, 1 and 2 of TB2). If connected, the printed circuit board (PCB) will be broken.
- · Pay attention to followings when wires are connected to terminal board.
 - (A) Attach an insulation tape or a sleeve to each terminal.
 - (B) Maintain the distance between the electrical box and the terminals to prevent a short circuit.
 - (C) Maintain the distance between the terminals.

In case of using optional wired remote control switch (PC-ARFPE) or optional receiver Kit (PC-ALHZF).

The following setting is required when the optional wired remote control switch (PC-ARFPE) or the optional receiver kit (PC-ALHZF) is used.

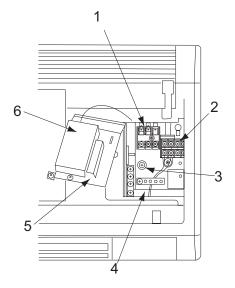
- The setting before shipment is "Wireless". Set the SW2 to "Wired". If not, the operation is not available.
- Connect the remote control switch cables to the terminals A and B at the terminal board TB2.

Dip switch PCB
SW2
Wired
Wireless


Change to "Wired"

In case of using optional wireless remote control switch (PC-AWR)

- The SW2 switch setting is NOT required when the wireless remote control switch (PC-AWR) is used with the receiver built in the indoor unit. However, the simultaneous indoor units operation is not available when this wireless remote control switch is used with the receiver built in the indoor unit. If the simultaneous indoor units operation is required with this wireless remote control switch, use the optional receiver kit (PC-ALHZF).
- For the identifying of indoor units installed side by side operation, the wireless remote control switch should be set at "b mode". (Refer to Installation and Operation Manual for the wireless remote control switch about "b mode" setting.)


RPK-(0.6-1.5)FSN(H)3M terminal board connections

N°	Part	
1	Screw for earth wiring connection	
2	Terminal board for power source	
3	erminal board for remote control switch cable	
4	Fix the wires by cord clamp	
5	Wire for receiver kit	
6	Electrical box cover	

RPK-(2.0-4.0)FSN3M terminal board connections

N°	Part	
1	Terminal board for power source	
2	Terminal board for remote control switch cable	
3	Screw for earth wiring connection	
4	Wire for receiver kit	
5	Electrical box cover	
6	Switch cover	

Test runs

A CAUTION

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

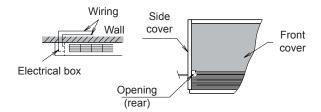
Electrical connection of RPF(I) units

Work prior to the electrical connection

- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

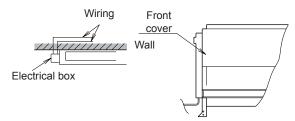
- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and **their** protection (sleeve or jacket) must be appropriate for the unit.
- · For further information, always consider the current regulations in the country where the unit is to be installed.

A CAUTION

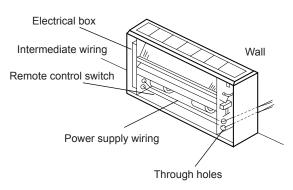

- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire. Check that the cables are firmly secured to the connection terminals.

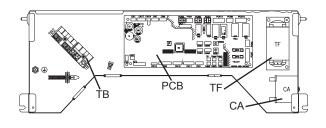
Electrical connection

Check that the power supply for the RPF/RPFI indoor unit is 230 V. If not, replace connectors CN on the TF transformers in the electrical box.



For RPF units, the correct wiring is connected from the rear left side.

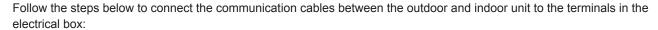

For RPFI units, the correct wiring is connected from the rear right side.



Open the front and side panels.

i NOTE

- To prevent the screws from falling from the terminal box, do not remove them completely, hold onto the terminal and check that the screw is secure through the hole in the terminal.
- Use the following screws for the terminal box:
 - M4 screw for the power supply.
 - M3.5 screw for the communication line.


N°	Part	
PCB	Printed circuit board.	
TF	Transformer.	
ТВ	Terminal box.	
CA	Capacitor.	

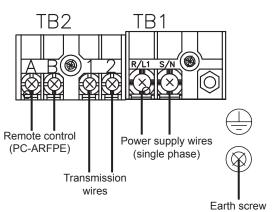
Follow the steps below to connect the cable of the remote control (PC-ARFPE/PC-P2HTE) or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to terminals A and B in the electrical box.
- 3 Tighten the screw on terminals A and B in the electrical box.
- 4 Check that the cables are correctly secured.

Follow the steps below to connect the power cables to the power terminals in the electrical box:

- 1 Where necessary, loosen the screws on the power terminals in the electrical box.
- 2 Connect power cables L1 and N to the power terminals in the electrical box.
- 3 Tighten the screws on the power terminals in the electrical box.
- 4 Check that the power cables are correctly secured.

- 1 Where necessary, loosen the screws on the communication terminals in the electrical box.
- 2 Connect the communication cables to communication terminals 1 and 2 in the electrical box.
- 3 Tighten the screws on the communication terminals in the electrical box.
- 4 Check that the communication cables are correctly secured.


Follow the steps below to connect the earth wire to the earth terminal in the electrical box:

- 1 Where necessary, loosen the screw on the earthing terminal in the electrical box.
- 2 Connect the shielded part of the power supply and signal wiring earthing cables to the earthing terminal.
- 3 Tighten the screw on the earth terminal in the electrical box.
- 4 Check that the shielded part of the earthing cables are correctly secured.

Test runs

A CAUTION

- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- · Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

4.1.11 Electrical connection of KPI units

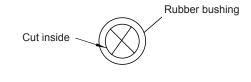
Work prior to the electrical connection

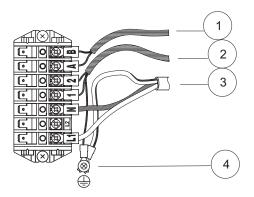
- 1 Turn off the power supply switches before starting work and fit the appropriate locks and safety warnings.
- 2 Wait 5 minutes after turning off the power supply switches.
- 3 Check that the fans on the indoor and outdoor units are at a standstill before starting work.

- The electrical power for the unit must involve a specific power line, with an exclusive power control switch and residual current breaker, installed in line with local or national safety regulations.
- Check that the electrical power line has enough capacity to supply the unit. Its length, the cable diameter and their protection (sleeve or jacket) must be appropriate for the unit.
- For further information, always consider the current regulations in the country where the unit is to be installed.

∠!\ CAUTION

- Risk of fire: cables must never touch the refrigerant pipes, printed circuit boards (PCB), sharp edges or electrical components inside the unit to avoid damaging them.
- Loose connection terminals may lead to cable and terminal overheating. The unit may operate incorrectly, leading to a risk of fire. Check that the cables are firmly secured to the connection terminals.


Electrical connection


Cut the centre of the rubber bushing in the wiring connection knock-out hole.

Follow the steps below to connect the remote control cable or the optional extension wire:

- 1 Pass the cable through the knock-out hole in the cabinet.
- 2 Connect the cable to the terminals on the printed circuit board (PCB) located inside the electrical box.
- 3 Tighten the screw on terminals A and B in the electrical box.
- 4 Check that the cables are correctly secured.

Nº	Part
1	Remote Control
2	Transmission Wires
3	Power supply wires (Single phase)

∠!\ CAUTION

Farth Screw

If the power cables are to be connected in series, check that the current is below 50 A.

Follow the steps below to connect the power cables to the power terminals in the electrical box:

- 1 Where necessary, loosen the screws on the power terminals in the electrical box.
- Connect the power cables to the power terminals in the electrical box.
- 3 Tighten the screws on the power terminals in the electrical box.
- 4 Check that the power cables are correctly secured.

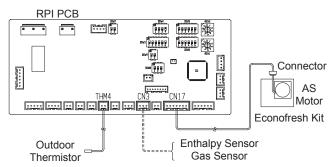
Follow the steps below to connect the earth wire to the earth terminal in the electrical box:

- 1 Where necessary, loosen the screw on the earthing terminal in the electrical box.
- 2 Connect the shielded part of the earth wire to the earth terminal.
- 3 Tighten the screw on the earth terminal in the electrical box.
- 4 Check that the shielded part of the earthing cables are correctly secured.

Firmly secure the cables using a tie inside the electrical box.

Cover the cables and the hole using a sealant to protect them from condensation and insects.

Test runs



- Be careful during the test runs, as some of the safety functions remain disabled: the units operate for two hours without switching off via the thermostat. The three-minute compressor protection is not enabled during the test.
- Secure the rubber bushes to the panel using adhesive when the outdoor unit ducts are not used.
- The compressor remains at a standstill during forced stoppage.

4.1.12 Econofresh electrical wiring connection

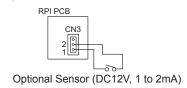
The electrical wiring connection for the unit is shown below. Mount the outdoor thermistor at a position near the outdoor air inlet.

Pay attention to the position of the thermistor where the direct sunshine is not radiated or rain water is not touched.

M

DANGER

- Turn OFF the main power switch to the unit and wait for more than 3 minutes before electrical wiring work or a periodical check is performed.
- · Check to ensure that the indoor unit's fan has stopped before electrical wiring work or a periodical check is performed.
- Protect the wires, electrical parts, etc. from rats or other small animals. If not protected, rats may gnaw at unprotected parts and at the worst, a fire will occur.



Wrap the accessory packing around the wires, and plug the wiring connection hole with the seal material to protect the products from any condensate water or insects.

Optional sensor connection

When installing the field-supplied sensors, select and connect the sensors as follows.

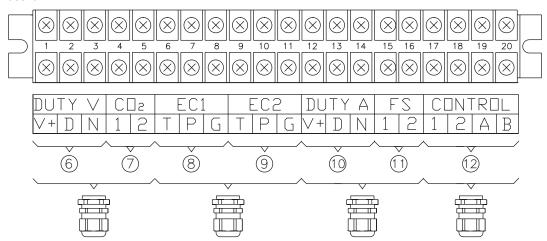
- The type of the sensor should be of ON/OFF switching type.
- The switch rating should be DC12V.
- Connect the wires to #1 and #2 of CN3 on the RPI PCB. (In this case, the enthalpy sensor cannot be applied.)
- Lead the wires through the connecting hole for the control circuit.

- 1 Enthalpy Sensor (Field-Supplied)
 - The switching arrangement should be as follows.
 - OFF: for Calling Free Cooling (Compressor OFF)
 - ON: for Calling Mechanical Cooling (Compressor ON)
 - Set the enthalpy sensor mode by using remote control switch.
- 2 CO2 Gas Sensor (Field-Supplied)
 - The switch arrangement should be as follows.
 - ON: for Increasing Outdoor Air Introduction
 - OFF: for Decreasing Outdoor Air Introduction
 - Set the CO2 Gas sensor mode by using remote control switch.

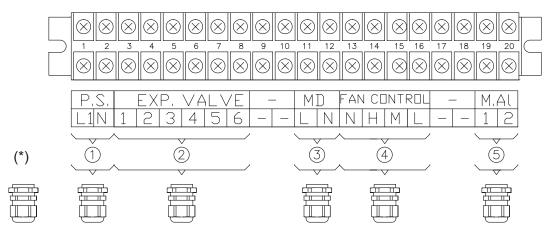
4.1.13 DX-Interface electrical wiring

- · Connect the electrical wires between the indoor unit and the outdoor unit, as shown in the next diagram.
- Follow the local codes and regulations when performing the electrical wiring.
- Use shielded wires for intermediate wiring to protect the units from noise obstacle at length of less than 300 m and size in compliance with local codes.
- In the event that a conduit tube for field-wiring is not used, fix rubber bushes to the panel with adhesive.
- All the field wiring and equipment must comply with local and international codes.
- · When a cable gland is not used, it must be sealed properly in order to ensure the correct control box sealing.

Pay attention to the connection of the operating line. Incorrect connection may cause PCB failure.



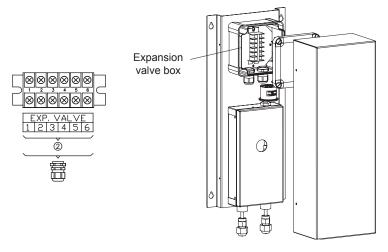
Packing gland diameter specification: 6.0 mm (min) to 12.0 mm (max). If needed, install additional tube insulation or wind with insulation tape around the wire to make the wire thicker.


◆ Control box terminal board

DX-Interface EXV-(2.0-10.0)E2

Terminal board 1

Terminal board 2



(*) Packing gland for thermistor installation.

♦ Expansion valve box terminal board

DX-Interface EXV-(2.0-10.0)E2

Terminal board connections and remarks

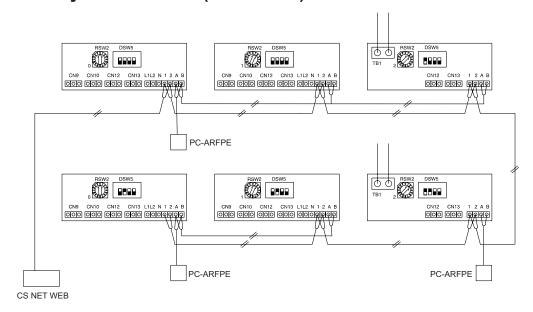
Terminal board 1

Mark	Item	Name	Description	Wire and maximum current specification (EN60335-1)	
	1	V+	DUTY V: Duty control by voltage (0~10V) (0~5V) (optional): V+: Output power to device (+24Vdc)	Wire section: 3x0,5mm ²	
6	2	D	D: Voltage input (0~10V) (0~5V)	i NOTE	
	3	N	N: GND	Maximum power by 24Vdc output: 3 W	
	4	1	CO ₂ signal (optional):		
7	5	2	Free contact: By closing the signal, the fan speed is set to High mode.	Wire section: 2x0,5mm ²	
	6	Т	EC1: PWM Output control for EC FAN 1 (optional): T: Tach input signal (Hz)		
8	7	Р	P: PWM output signal (0-100%)	Wire section: 3x0,5mm ² (*1)	
	8	G	G: GND		
	9	Т	EC2: PWM Output control for EC FAN 2 (optional): T: Tach input signal (Hz)	Wire section: 3x0,5mm² (*1)	
9	10	Р	P: PWM output signal (0-100%)		
	11	G	G: GND		
	12	V+	DUTY A: Duty control by current (4~20mA) (optional): V+: Output power to device (+24Vdc)	Wire section: 3x0,5mm ²	
10	13	D	D: Current input (4~20mA)	NOTE: Maximum power by 24Vdc output: 3 W	
	14	N	N: GND	21 vao oatpat. o vv	
(1 1)	15	1	FS: Float switch (optional):	Wire section: 2x0,5mm ²	
	16	2	Free contact between terminals 1(15) and 2(16)	vviie section. 2x0,5mm	
	17	1	CONTROL: H-LINK and remote controller communication (Necessary):		
12	18	2	The H-LINK transmission between outdoor unit and indoor unit is 2 wired to terminals 1-2.	Wire section: 2x0,5mm ²	
	19	А	The Remote controller must be connected between pins A and B	Wire section: 2x0,5mm²	
	20	В	(non polarity)		

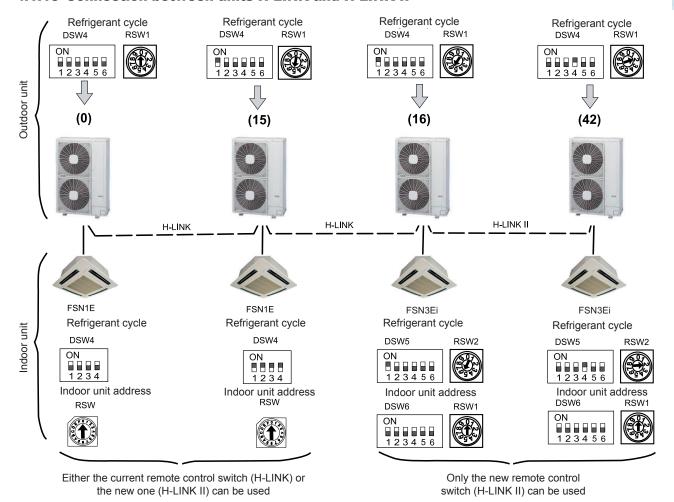
(*1): If fan wiring length is higher than 3m, use shielded wires in compliance with local codes.

Terminal board 2

Mark	Item	Name	Description	Wire and maximum current specification (EN60335-1)	
	1	L1	P.S.: Power supply (necessary):	1~ 230V 50Hz, Max current. 5A Wire section: 3x0,75mm²	
1	2	N	The main power supply connection (230 Vac) is wired to terminals L1 and N.		
	3	1			
	4	2			
(2)	5	3	EXP. VALVE: Expansion valve connection (necessary): Link to expansion valve assembly. Number links from 1 to 6 must match in	Wire section: 6x0,5mm ²	
2	6	4	e-box terminal board and expansion valve terminal board	Wile Section, 0x0,5mm	
	7	5			
	8	6			
_	9	-	Not used	_	
	10	-	Not used	_	
	11	L		1~ 230V 50Hz Max current: 1A (output) Wire section: 2x0,75mm²	
3	12	N	MD: Motor Drain discharge (optional): A drain water pump (field supplied) can be connected to DX-kit interface.		
	13	N	FAN CONTROL: Fan tap speed control by HITACHI remote controller (optional): N-Neutral phase connection (common)	Maximum current allowed: 3,5A	
4	14	Н	H: High fan speed signal	Wire section: 4x0,75mm ²	
	15	М	M: Medium fan speed signal	(*1)	
	16	L	L: Low fan speed signal		
-	17	-	Not used	_	
	18	-	NOT USEU	_	
	19	1	M. AL: Motor alarm signal: Alarm input signal can be used for alarm link between the DX-Kit interface and the unit connected. If the jumper between terminal 1 (19) and 2 (20) is	Wire section: 2x0,75mm ²	
5	20	2	open, unit will be switched to alarm condition. Connect again to restart the system	(*2)	



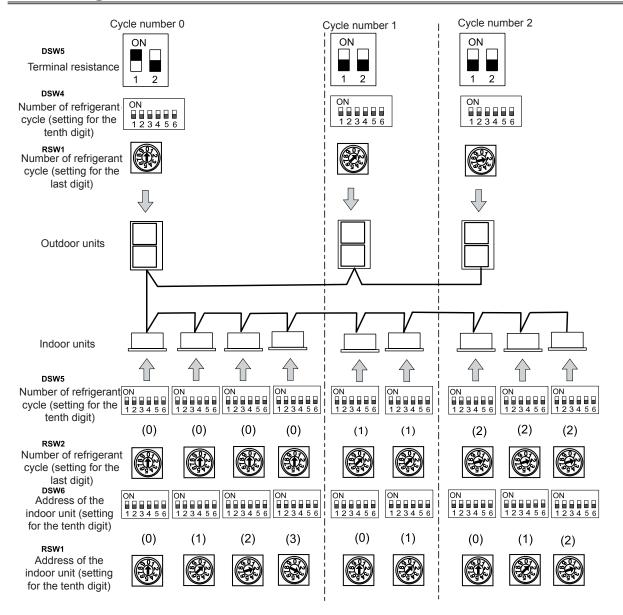
- (*1): Locked rotor amperage (LRA) must be lower than 8A.
- (*2): Alarm signal with high power (1~ 230V 50Hz): In case of M. Al, connection is not necessary. The harness jumper provided inside the DX-Interface must be used.


Expansion valve box

Mark	Item	Name	Description	Wire and maximum current specification (EN60335-1)
	1	1	Control connection (necessary): Link to control assembly. Number links from 1 to 6 must match in expansion valve terminal board and control terminal board.	Wire section: 6x0,5mm ²
	2	2		
(2)	3	3		
(2)	4	4		
	5	5		
	6	6		

4.1.14 Network system connection (CS-NET WEB)

4.1.15 Connection between units H-LINK and H-LINK II

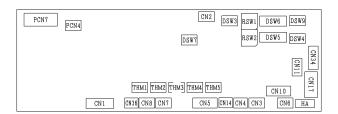


For mixed H-LINK and H-LINK II systems, set the H-LINK units in the first 16 positions of the system, as shown in the following figure. There are 26 systems with FSN(2/3/4)E indoor units.

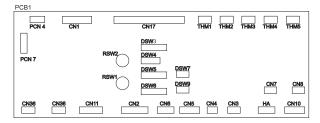
- H-LINK is able to manage up to 160 indoor units.
- When PSC-5S and CSNET WEB 2.0 (only compatible with H-LINK), are used, remember that only 16 indoor units and 16 outdoor units can be managed.

4.2 Setting of DIP switches and RSW switches

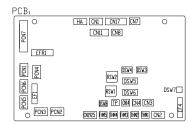
- Turn off the power supply before setting the DIP switches. Otherwise, the switch settings are invalid.
- 2 To set the position of the RSW rotary switches, insert a screwdriver into the groove of the RSW.

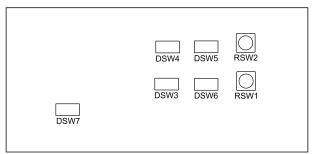


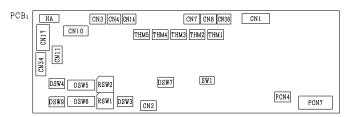
The DIP and RSW switches of each indoor and outdoor unit must be set, although they do not all have to be set. Read the following sections carefully for information on which ones must be set.

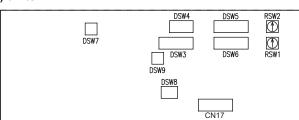

4.2.1 Location of DIP switches and RSW switches

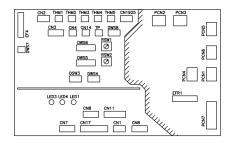
Location of DIP switches and RSW rotary switches

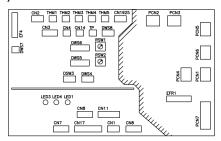

RCI-(1.0-6.0)FSN4 units

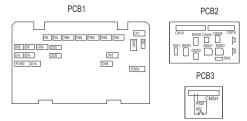

RCIM-(0.6-2.0)FSN4(E) units

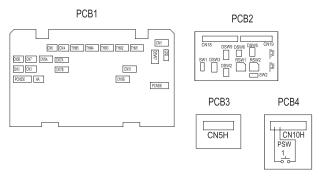

RCD-(1.0-3.0)FSN2 units


- RPC-(2.0-6.0)FSN3E units
- RPF(I)-(1.0-2.5)FSN2E units

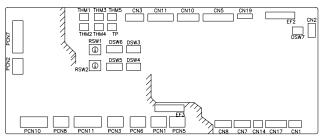

RPC-(1.5-6.0)FSN3 units

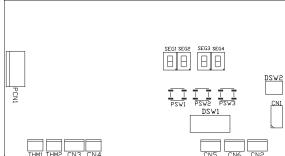

RPI(M)-(0.6-6.0)FSN4E(-DU) units

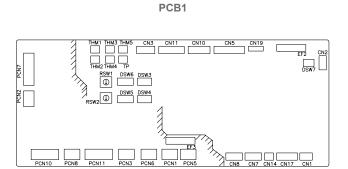

RPI-(8.0/10.0)FSN3E(-f) units

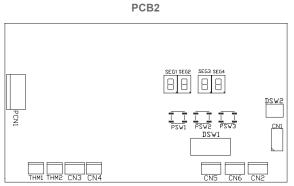

RPI-(16.0/20.0)FSN3PE(-f) units (x2)

RPK-(0.6-1.5)FSN(H)3M units




RPK-(2.0-4.0)FSN3M units


KPI-(252-2002)E4E and KPI-(502-1002)X4E units



DX-Interface

4.2.2 Functions of the DIP switches and RSW switches (Indoor units)

Turn off the power supply before setting the DIP switches. If not, the settings will not be valid.

- The symbol "•" indicates the position of the DIP switches. The figures show the setting before transmission or after selection.
- If the "m" mark is not displayed, this indicates that the position of the pin is not affected.

◆ SW1 (RCI-FSN4, RPC-FSN3 and RPK-FSN(H)3M only)

No settings are required. Factory setting:

◆ SW2 (RPK-(0.6-4.0)FSN(H)3M only)

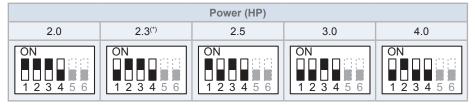
Factory setting		Wired remote co	ntrol
Wired	7	Wired	
Wireless		Wireless	

In case of using the wired remote control or receiver kit PC-ALHZF set the SW2 to "Wired".

◆ DSW2: optional function setting (RPK-FSN(H)3M only)

Factory setting	Special lower capacity setting (0.6HP) (1)	Distinguish of indoor units using wireless remote control (2)	
ON	ON	ON	
1 2 3 4	1 2 3 4	1 2 3 4	


- (1) Only available for RPK-0.8FSN3M unit. 0.8 HP Indoor Units set to a lower capacity (0.6 HP) can only be used in combination with SET FREE MINI series 2 (RAS-(4-6)FS(V)N(Y)3E) and SET FREE FSXN series.
- (2) In order to identify one indoor unit with its own wireless remote control, set DSW2 pin3 ON and set the wireless remote control at "b" mode. For more information, please refer to the corresponding Installation and Operation Manual.
- When using a wireless remote controller, no additional receivers are required for individual operation.
- For simultaneous operation it is required:
 - Option 1: PC-ARFPE remote control.

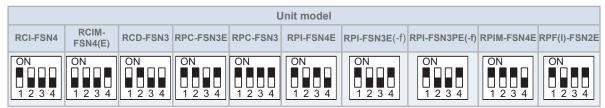

Option 2: In the case of wireless operation with PC-AWR, PC-ALHZF receiver kit is necessary. In both options change SW2 to wired setting.

◆ DSW3: capacity code setting

No settings are required. This DIP switch with 4 or 6 switches (depending on Indoor Units) is used to set the capacity code corresponding to the power of the indoor unit.

Indoor Unit capacity 1.5 HP, 2 HP and 2.5 HP can be set to a lower capacity (1.3 HP, 1.8 HP and 2.3 HP) using the DIP switch.

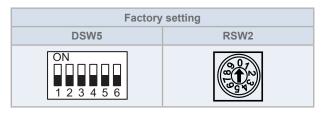
Power (HP)				
5.0	5.0 6.0 8.0 10.0			
ON 1 2 3 4 5 6	ON 1 2 3 4 5 6	ON 1 2 3 4	ON 1 2 3 4	


	Power (HP)	
	16.0	20.0
PCB1 (Upper Ebox)	ON 1 2 3 4	ON 1 2 3 4
PCB2 (Lower Ebox)	ON 1 2 3 4	ON 1 2 3 4

- (*) Capacity available with DSW3 setting.
- In those model with switch number 5 and 6, both switches are not used (except 0.6 HP models)

◆ DSW4: unit model code setting

No settings are required. This DIP switch is used to set the model code corresponding to the type of indoor unit.



i NOTE

DSW4 Not assembled in the RPK-FSN(H)3M models.

◆ DSW5 and RSW2: refrigerant cycle number setting

It is required to change factory default setting, with a value of up to 63. In the same refrigerant cycle, set the same refrigerant cycle number for the outdoor unit and the indoor unit.

Example of system setting with a value of: 5		
DSW5 RSW2		
ON 1 2 3 4 5 6		

RPI-(16.0/20.0)FSN3PE: Set both modules to one cycle number (only).

◆ DSW6 and RSW1: Unit number setting

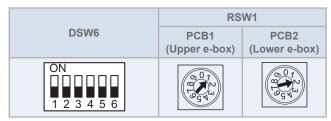
It is required to change factory default setting, with any value from 0 up to 63. The address number must be unique for each unit (in the same refrigerant cycle).

 $[i]_{\mathsf{NOTE}}$

If "auto-address" function is available, the setting of DSW6 and RSW1 is not required.

All indoor units except RPI-(16.0/20.0)FSN3PE(-f):

Factory setting		
DSW6 RSW1		
ON 1 2 3 4 5 6		


Example of system setting with a value of: 16		
DSW6 RSW1		
ON 1 2 3 4 5 6		

i NOTE

It is recommended to assign a number from starting"1"

RPI-(16.0/20.0)FSN3PE(-f) only:

No setting is required.

When further connecting indoor units, make sure to set a number other than one or two for each indoor unit.

◆ DSW7: fuse recovery

No settings are required.

	All models
Factory setting	
In case of applying high voltage to the terminal 1-2 of TB (Transmitting wires), the fuse on the PCB is cut. In such a case, firstly correct the wiring to TB and then turn ON switch 1 (as showin in the figure).	

DSW7 Not assembled in the RPC-FSN3 models.

♦ DSW8

No settings are required.

	Only: RCD-FSN2E, RPI(M)(0.8–1.5)FSN4E, RPI(2.0–6.0)FSN4E, RPI-(8.0–10.0)FSN3E(-f), RPI-(16.0–20.0)FSN3PE(-f)
Factory setting	ON

♦ DSW9

No settings are required.

	Only for RCI-FSN4, RPC-FSN3, RPI-(2.0-6.0)FSN4E, RPK-FSN(H)3M	Only for RCIM-FSN4(E) RPI(M)-(0.6–1.5)FSN4E
Factory setting	ON	ON
Special 0.6 HP capacity setting (1)	Not used	ON 1 2

⁽¹⁾ Only available for RCIM-0.8FSN4(E) and RPI(M)-0.8FSN4E units. 0.8 HP Indoor Units set to a lower capacity (0.6 HP) can only be used in combination with SET FREE MINI series 3 (RAS-(4-6)FS(V)N(Y)3E).

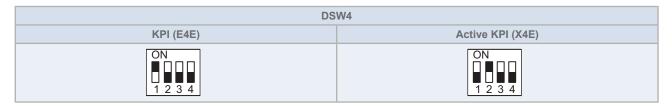
4.2.3 Functions of the DIP switches and RSW switches (KPI units)

♦ PCB1 settings

DSW1 and **DSW2**

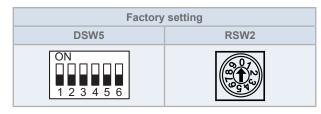
No settings are required.

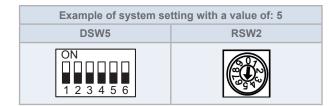
DSW1	DSW2
All units	All units
1 2 3 4 5 6 7 8	ON 1 2


DSW3: capacity code setting

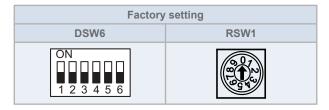
No setting is required, due to setting before shipment. This dip switch is used for setting the capacity code.

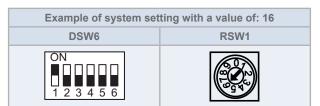
DSW3					
KPI-252	KPI-502	KPI-802	KPI-1002	KPI-1502	KPI-2002
ON 1 2 3 4	ON	ON 1 2 3 4	ON 1 2 3 4	ON	ON


DSW4: unit model code setting

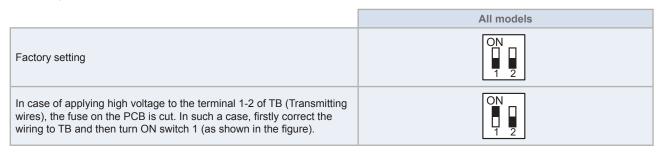

No settings are required. This DIP switch is used to set the model code corresponding to the type of indoor unit. Follow the instructions given in the Service Manual.

DSW5 and RSW2: refrigerant cycle number setting


It is required to change factory default setting, with a value of up to 63. In the same refrigerant cycle, set the same refrigerant cycle number for the outdoor unit, indoor unit and KPI unit.



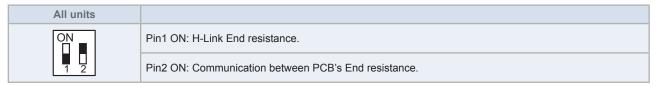
DSW6 and **RSW1**: Unit number setting


It is required to change factory default setting, with any value from 0 up to 63. The number allocated to each KPI unit must be set as standard. Follow the instructions given in the Service Manual.

DSW7: fuse recovery

No settings are required.

DSW7 Not assembled in the RPC-FSN3 models.


♦ PCB2 settings

DSW1: Optional functions

Factory setting	ON 1 2 3 4 5 6 7 8
Pin 7: Common operation of remote control switch	ON 1 2 3 4 5 6 7 8

DSW2: End resistance

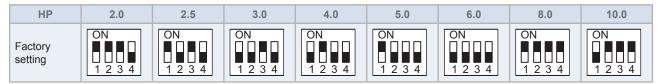
In case that only KPI units are connected in the same HLINK (no outdoor unit connected in the same HLINK) set pin1 ON (to only one KPI unit). Otherwise, no setting is required for DSW2.

4.2.4 Functions of the DIP switches and RSW switches (Econofresh kit)

Dip Switch setting shall be performed at RPI PCB's.

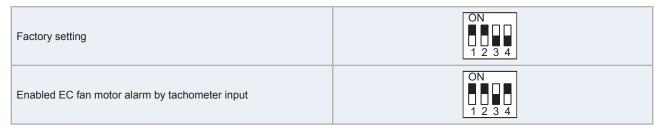
Turn OFF all power sources before setting the dip switches. Without turning OFF, the contents of setting would be invalid

	RPI Dip Switch Factory Setting	RPI+Econofresh Kit installation Dip Switch Setting
RPI-(4/5/6)FSN4E DSW	ON 1 2 3 4	ON 1 2 3 4

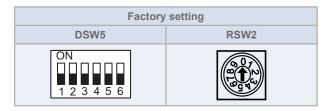

Mark of "■" indicates the position of dip switches.

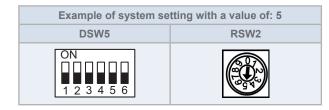
4.2.5 Functions of the DIP switches and RSW switches (DX-Interface)

♦ PCB1 settings

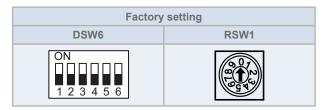

DSW3: capacity code setting

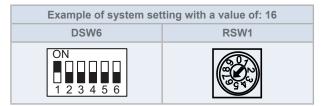
No settings are required. This DIP switch is used to set the capacity code corresponding to the DX-Interface power (HP).


DSW4: unit model code setting and optional setting

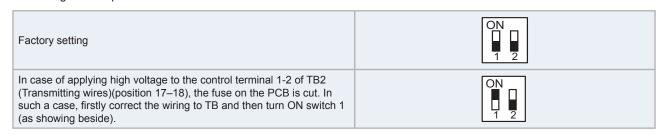

No settings are required.

DSW5 and **RSW2**: refrigerant cycle number setting


It is required to change factory default setting, with a value of up to 63. In the same refrigerant cycle, set the same refrigerant cycle number for the outdoor unit and DX-Interface.



DSW6 and **RSW1**: Unit number setting


It is required to change factory default setting, with any value from 0 up to 63. The number allocated to each KPI unit must be set as standard. Follow the instructions given in the Service Manual.

DSW7: fuse recovery

No settings are required.

♦ PCB2 settings

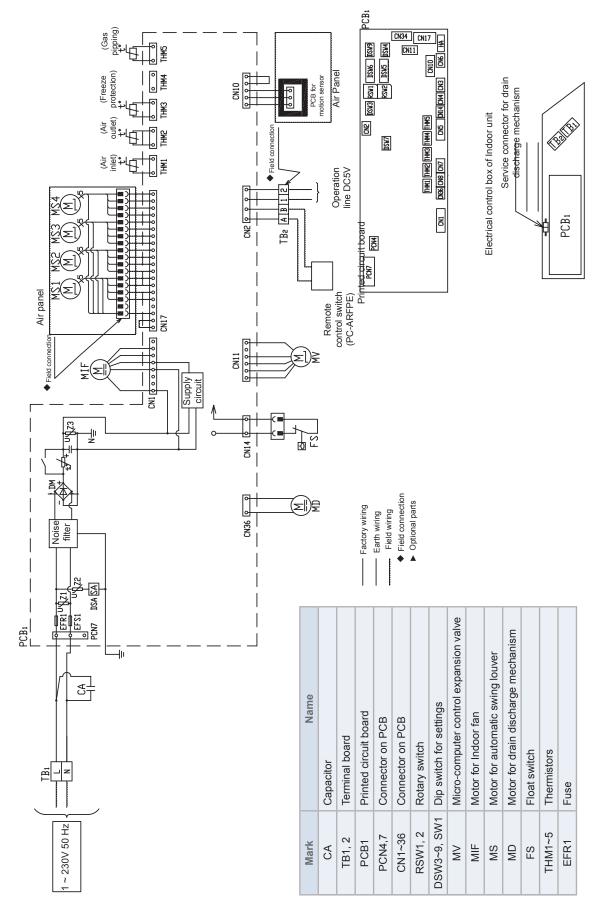
DSW1: Optional functions

Factory setting	ON 1 2 3 4 5 6 7 8	
	Discharge air control (Control by outlet temperature)	ON 12345678
Pins 1 and 2: Capacity control setting	Indoor air control (Control by inlet temperature)	ON 1 2 3 4 5 6 7 8
	External duty control (*1)	ON 12345678
	4~20 mA (Internal 100Ω load impedance)	ON 1 2 3 4 5 6 7 8
Pins 3 and 4: Duty signal setting (*1)	0~10 V (Internal 47Ω pull-down resistor)	ON 1 2 3 4 5 6 7 8
	0~5 V (Internal 47Ω pull-down resistor)	ON 1 2 3 4 5 6 7 8
Pin 5: Duty mode selection (*2)		ON 1 2 3 4 5 6 7 8
Pin 6: Thermo ON/OFF external input en	ON 1 2 3 4 5 6 7 8	
Pin 7: Group controller (Pin 7 ON: grou	ON 1 2 3 4 5 6 7 8	
Pin 8: Not used	ON	

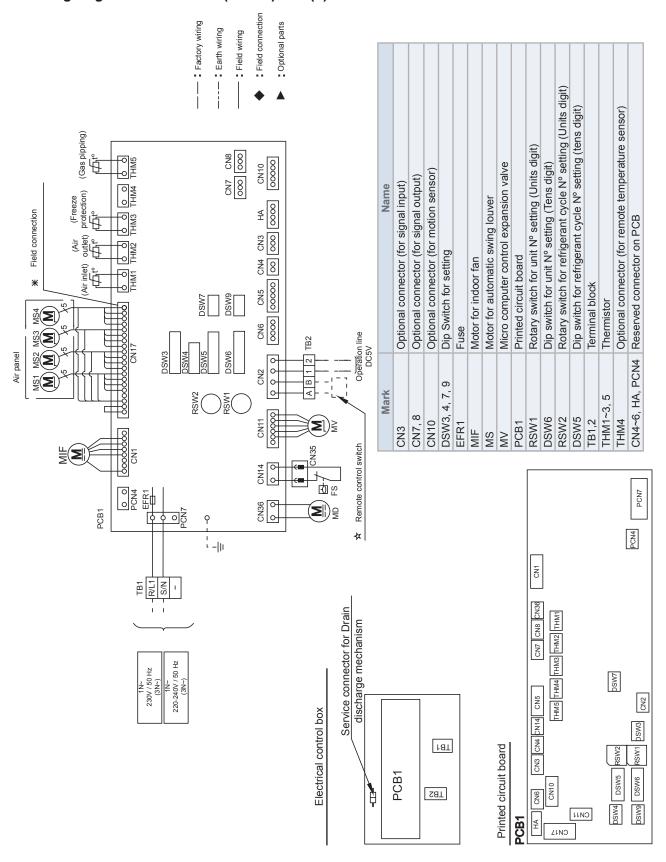
- (*1): If external duty control is selected (pins 1-2), check the proper selection for the duty signal (pins 3-4).
- (*2): If external duty control is selected (pins 1-2-3-4), then turn pin 5 OFF for absolute reference or ON for incremental reference.
- (*3): The thermo ON/OFF control can be driven externally by an input signal connected to the CN3 socket of the PCB1. The pin 6 of DSW1 in PCB2 must be switched on, then the input "i1" of CN3 is automatically set for thermo ON/OFF control. The setting of input "i2" is kept as set on the remote controller.
- (*4) One unit of DX-Interface series 2 is to be set as a group controller, while all the other group members are slave
- Please refer to HITACHI Indoor units Service Manual for further information about the setting and connection of the auxiliary inputs.

DSW2: End resistance

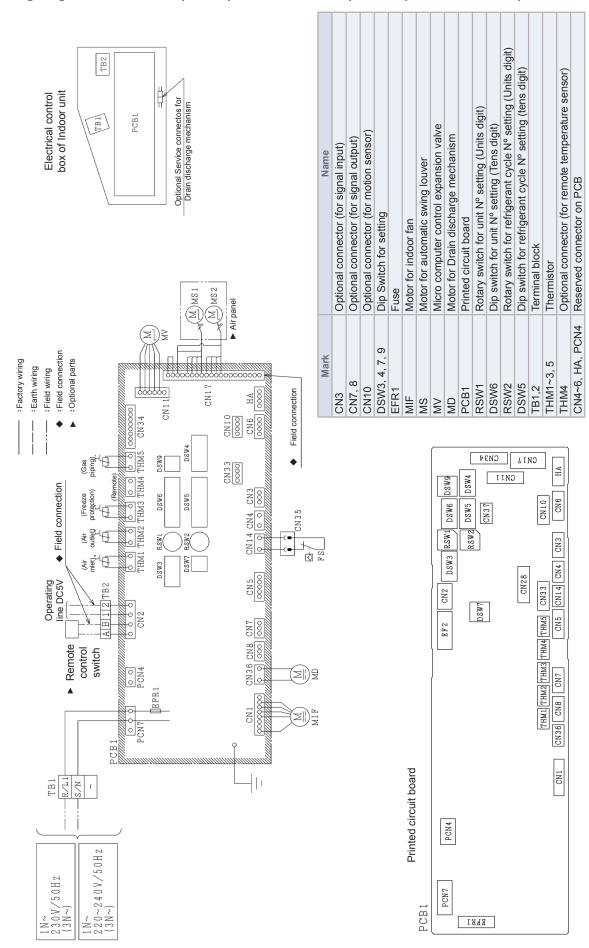
No setting is required.

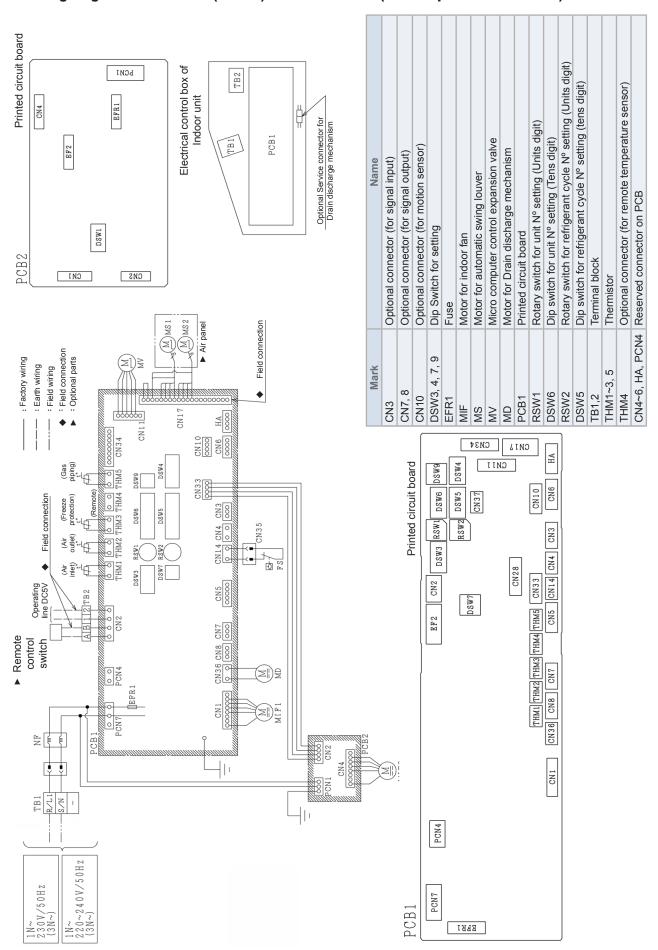


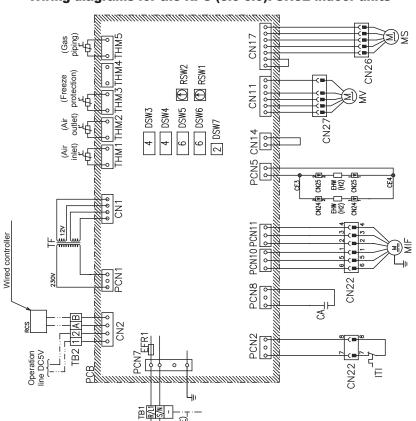
1

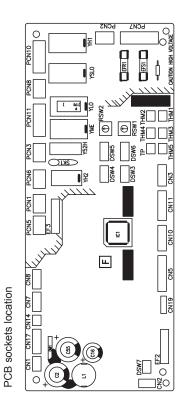

4.3 Wiring diagrams for indoor units and complementary systems

4.3.1 Wiring diagrams for indoor units


♦ Wiring diagrams for the RCI-(1.0-6.0)FSN4 indoor units


♦ Wiring diagrams for the RCIM-(0.6-2.5)FSN4(E) indoor units

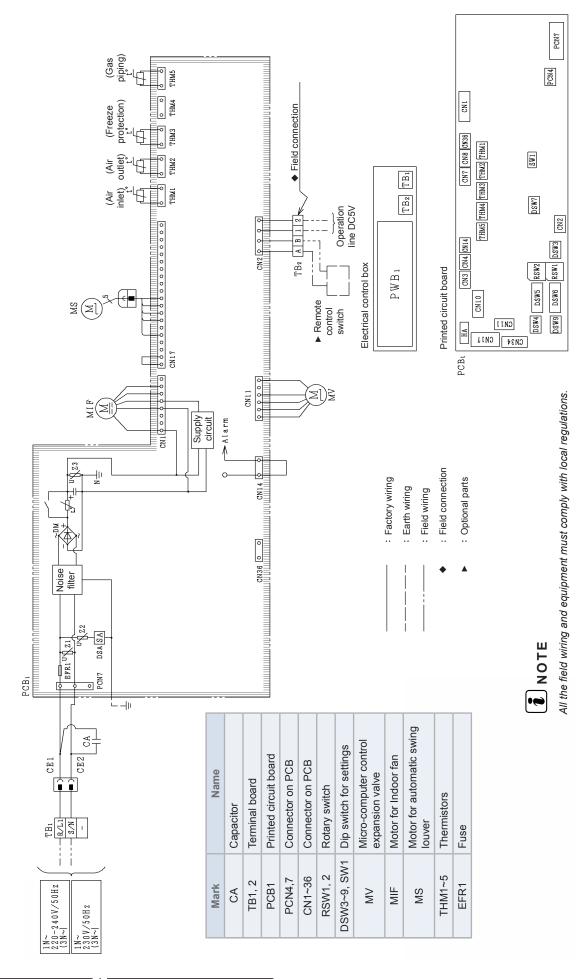

♦ Wiring diagrams for the RCD-(0.8-3.0)FSN3 indoor units(with air panel P-AP90DNA)



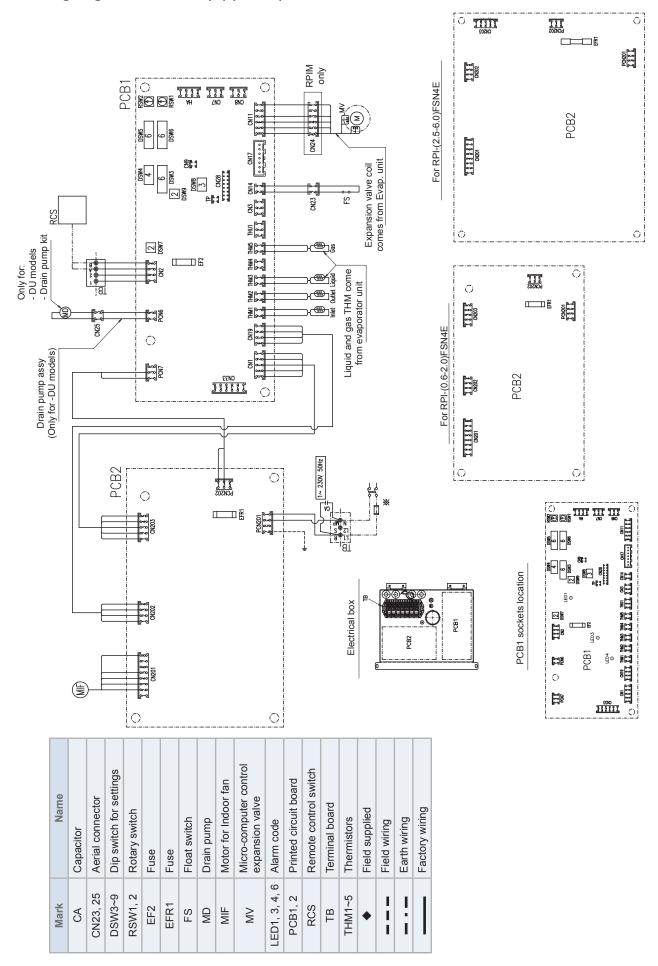
◆ Wiring diagrams for the RCD-(4.0-6.0)FSN3 indoor units(with air panel P-AP160DNA)

♦ Wiring diagrams for the RPC-(3.0-6.0)FSN3E indoor units

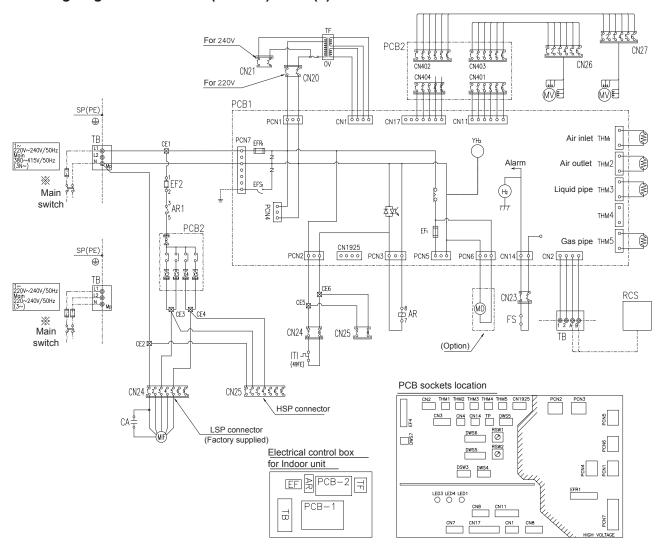
	CA
	TF
PCB	TB2 TB1


Electrical control box

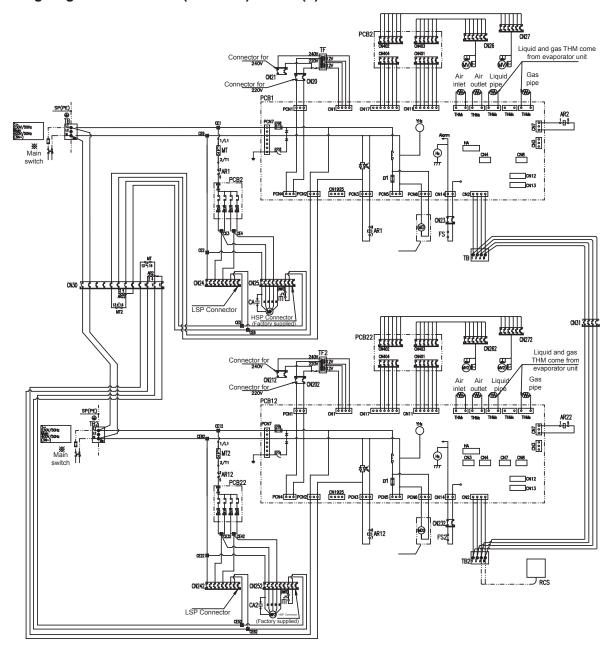
1~ 230V / 50Hz


Name	Refrigerant cycle n°	Surge absorber	Terminal Block	Terminal block	Connector	Transformer	Inlet air thermistor	Outlet air thermistor	Liquid pipe thermistor	Gas pipe thermistor	Relay for drain motor	Relay for HI fan motor tap	Relay for ME fan motor tap	Relay for LO fan motor tap	Relay for SLO fan motor tap	Relay for electric heater	Field supplied	Field wiring	Earth wiring	Factory wiring	
Mark	RSW ₂	SA	TB1	TB2	CE3, 4	Ŧ	THM ₁	THM ₂	THM ₃	THM ₅	≺	≻ [±]	≺ ME	≺	Yslo	Y _{52H}			1		

Name	Capacitor for Indoor fan	Connector	Unit capacity code	Model	Refrigerant cycle n°	Unit code	Fuse recover/Remote control selector	Fuse	Fuse) Electric heater	Float switch	Internal thermostat for Indoor unit fan	Motor for drain discharge mechanism	Motor for Indoor fan	Motor for automatic swing louver	Expansion valce	Alarm code	Printed circuit board	Remote control switch	Indoor unit no settings
Mark	CA	CN _{21~26}	DSW ₃	DSW ₄	DSW ₅	DSW ₆	DSW ₇	EFR,	EFS ₁	EHW(H2)	FS	E	MD	MIF	MS	AV	LED _{1~3}	PCB	RCS	RSW ₁

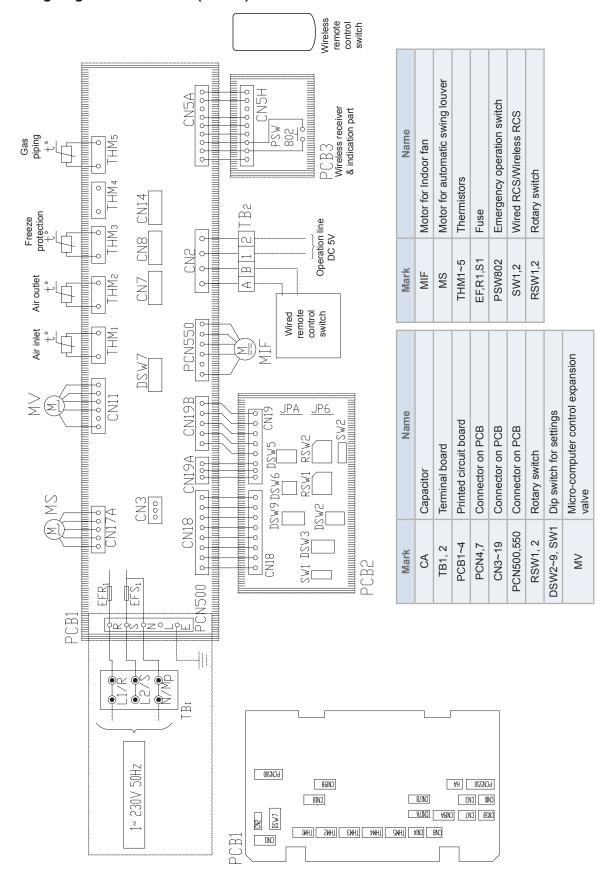

♦ Wiring diagrams for the RPC-(1.5-6.0)FSN3 indoor units

♦ Wiring diagrams for the RPI(M)-(0.6-6.0)FSN4E indoor units

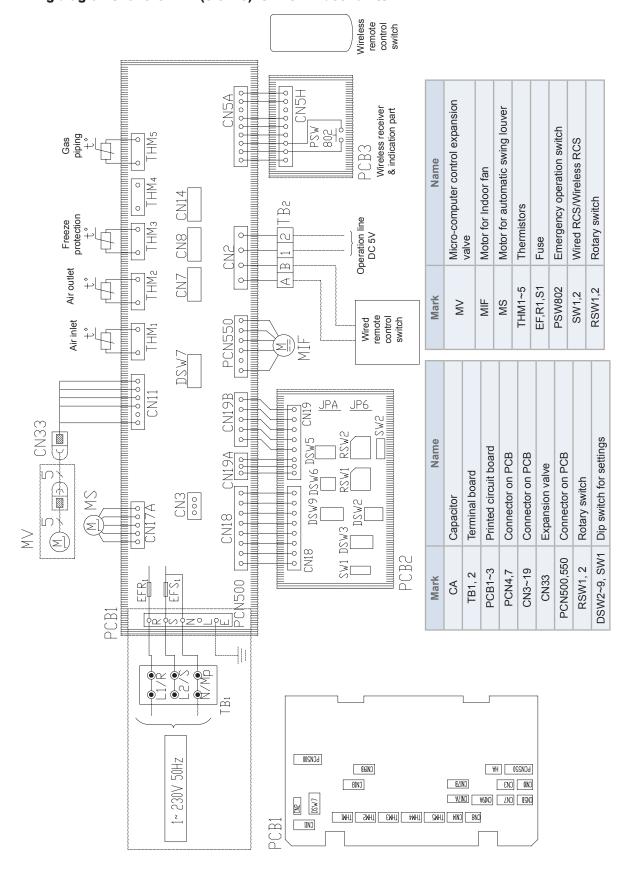

♦ Wiring diagrams for the RPI-(8.0/10.0)FSN3E(-f) indoor units

Mark	Name
AR	Auxiliary relay
CA	Capacitor for Indoor fan
CN _{20~n}	Connector
DSW ₃	Unit capacity code
DSW ₄	Unit model code
DSW ₅	Refrigerant cycle nº
DSW ₆	Indoor unit setting
DSW ₇	Fuse recover/Remote control selector
EF2	Fuse
EFR1	Fuse
FS	Float switch
ITI	Internal thermostat for Indoor unit fan
MD	Motor for drain discharge mechanism
MIF	Motor for Indoor fan
MV	Expansion valve
LED _{1~3}	Alarm code
PCB1	Main printed circuit board
PCB2	Relay printed circuit board

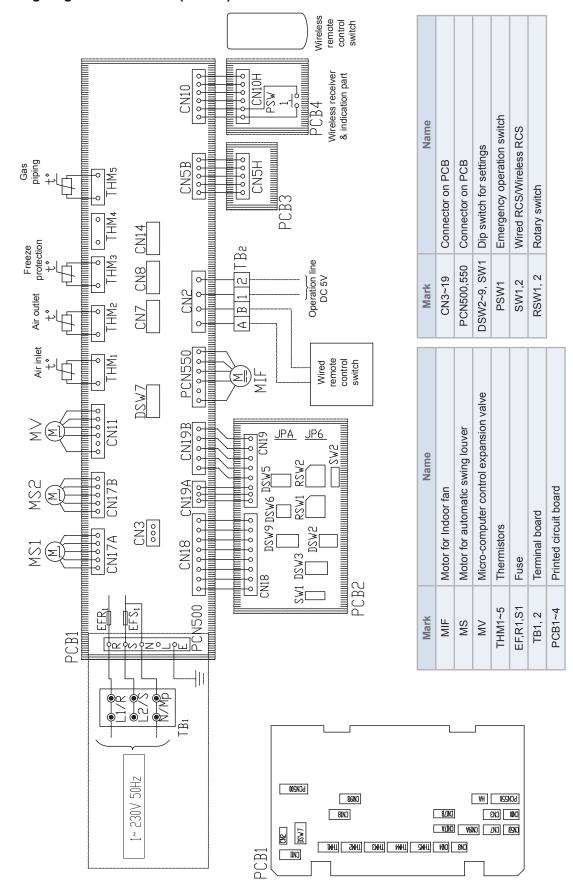
Mark	Name
RCS	Remote control switch
RSW₁	Indoor unit no settings
RSW ₂	Refrigerant cycle nº
ТВ	Terminal board
TF	Transformer
THM₁	Inlet air thermistor
THM ₂	Outlet air thermistor
THM ₃	Liquid pipe thermistor
THM ₅	Gas pipe thermistor
X2	High speed terminal
Х3	Medium speed terminal
X4	Low speed terminal
X5	S-Low speed terminal
	Field supplied
	Field wiring
	Earth wiring
	Factory wiring


♦ Wiring diagrams for the RPI-(16.0/20.0)FSN3PE(-f) indoor units

Mark	Name
AR1,2,12,22	Auxiliary relay
CA2	Capacitor for Indoor fan
CN _{20∼n}	Connector
DSW ₃	Unit capacity code
DSW ₄	Unit model code
DSW ₅	Refrigerant cycle nº
DSW ₆	Indoor unit setting
DSW ₇	Fuse recover/Remote control selector
MT	Magnetic and thermal circuit breaker
EFR ₁	Fuse
FS	Float switch
ITI	Internal thermostat for Indoor unit fan
MD	Motor for drain discharge mechanism
MIF	Motor for Indoor fan
MV	Expansion valve
LED _{1~3}	Alarm code
PCB1,12	Main printed circuit board
PCB2,22	Relay printed circuit board

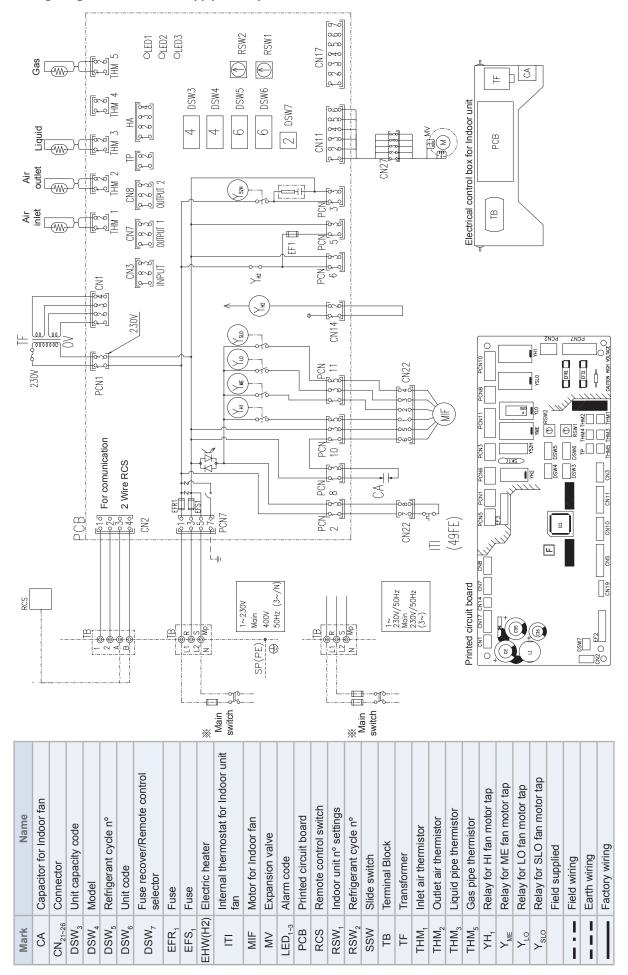

Mark	Name
RCS	Remote control switch
RSW ₁	Indoor unit no settings
RSW ₂	Refrigerant cycle nº
TB	Terminal board
TF	Transformer
THM ₁	Inlet air thermistor
THM ₂	Outlet air thermistor
THM ₃	Liquid pipe thermistor
THM ₅	Gas pipe thermistor
X2	High speed terminal
X3	Medium speed terminal
X4	Low speed terminal
X5	S-Low speed terminal
	Field supplied
	Field wiring
	Earth wiring
	Factory wiring

♦ Wiring diagrams for the RPK-(0.6-1.5)FSN3M indoor units

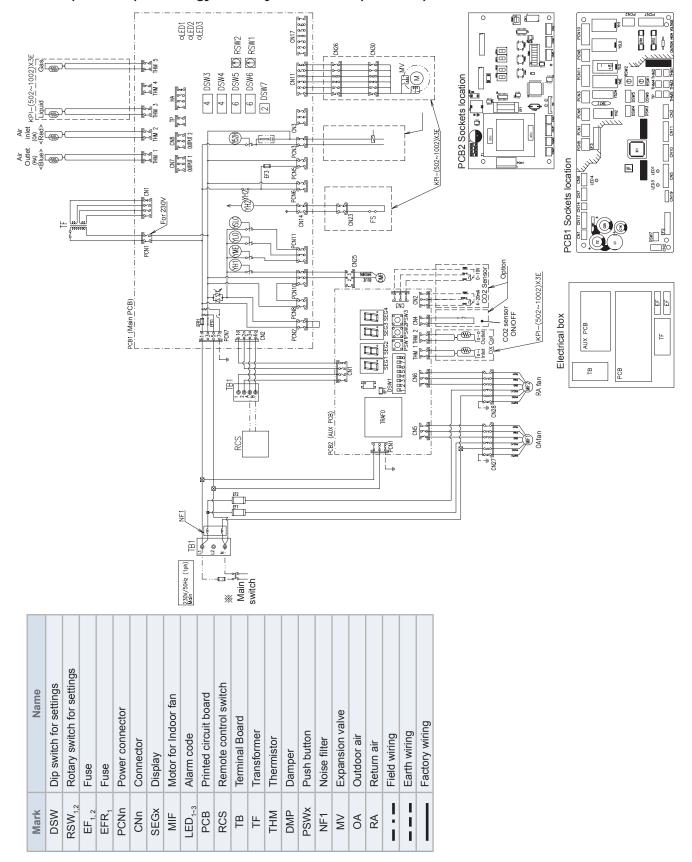


4

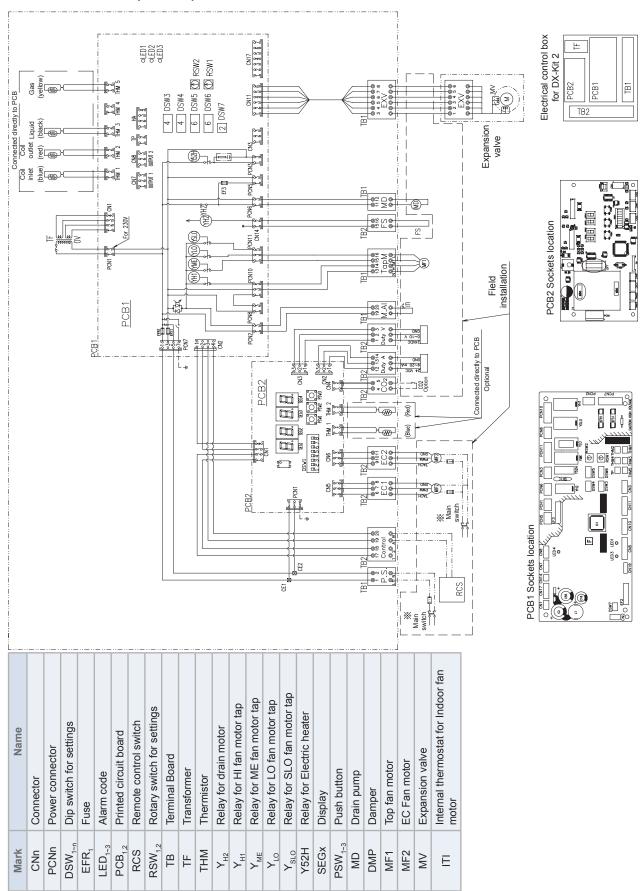
♦ Wiring diagrams for the RPK-(0.6-1.5)FSNH3M indoor units



♦ Wiring diagram for the RPK-(2.0-4.0)FSN3M indoor unit


4

♦ Wiring diagrams for the RPF(I)-(1.0-2.5)FSN2E indoor units



4.3.2 Wiring diagrams for complementary systems

♦ KPI-(252-2002)E4E energy recovery unit and KPI-(502-1002)X4E active unit

◆ DX-Interface EXV-(2.0-10.0)E2

Control system

Index

5.1	Printed circuit boards for RCI-FSN4 indoor units	. 186
	5.1.1 Printed circuit boards for RCI-(1.0-6.0)FSN4	186
5.2	Printed circuit boards for RCIM-FSN4(E) indoor units	. 187
5.3	Printed circuit boards for RCD-FSN3 indoor units.	.188
5.4	Printed circuit board for RPC-FSN3E, RPF(I), units	. 189
5.5	Printed circuit board for RPC-FSN3	. 190
5.6	Printed circuit board for RPI(M)-(0.6-6.0)FSN4E	. 191
5.7	Printed circuit board for RPI-(8.0-20.0)FSN3(P)E(-f) units	.192
5.8	Printed circuit board for RPK-FSN(H)3M units	. 193
	5.8.1 For RPK-(0.6-1.5)FSN(H)3M	193
	5.8.2 For RPK-(2.0-4.0)FSN3M	194
5.9	Printed circuit board for complementary systems	. 195
	5.9.1 Printed circuit board for KPI	195
	5.9.2 Printed circuit board for DX-Interface	196
5.10	Safety protection and control	. 197
5.11	Indoor electronic expansion valve control	. 198

A CAUTION

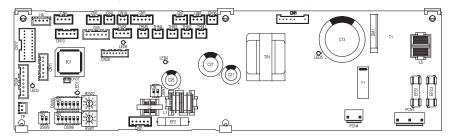
Turn off the power supply before setting the DIP switches. If not, the settings will not be valid.

- The symbol "•" indicates the position of the DIP switches. The figures show the setting before transmission or after selection.
- If the "•" mark is not displayed, this indicates that the position of the pin is not affected.

5.1 Printed circuit boards for RCI-FSN4 indoor units

5.1.1 Printed circuit boards for RCI-(1.0-6.0)FSN4

The indoor unit PCB operates with five types of DIP switches and two rotary switches. The position is as follows:

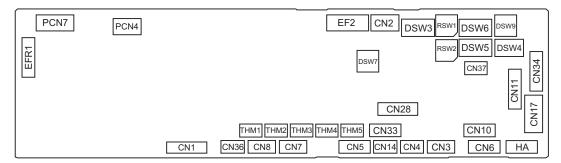

		LED indicator
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Red	PCB power supply

	Connector indication
PCN7	Terminal board 1
THM1	Air inlet thermistor
THM2	Air outlet thermistor
THM3	Freeze protection thermistor
THM5	Gas piping thermistor
CN1	Motor for indoor fan
CN2	Terminal board 2
CN10	Air panel PCB
CN11	Micro-computer control expansion valve
CN14	Float switch
CN17	Air panel motor for automatic swing louver
CN36	Motor for drain discharge mechanism
EFR1	PCB1 fuse
EFS1	PCB1 fuse

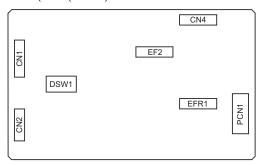
Switch indication		
DSW3	Capacity code	
DSW4	Unit model code	
DSW5, RSW2	Refrigerant cycle number	
DWS6, RSW1	Indoor unit number settings	
DSW7	Fuse re-establishing	

5.2 Printed circuit boards for RCIM-FSN4(E) indoor units

The indoor unit PCB operates with five types of DIP switches and two rotary switches. The position is as follows:



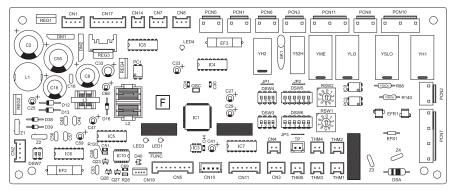
LED indicator		
LED 1	Red	This LED indicates the transmission status between the indoor unit and the remote control
LED 2	Yellow	This LED indic*ates the transmission status between the indoor unit and the outdoor unit
LED 3	Red	PCB power supply


Connector indication		
CN3	Optional connector (For signal input)	
CN7, 8	Optional connector (For signal output)	
CN10	Optional connector (For motion sensor)	
DSW3, 4, 7, 9	Dip switch for setting	
EFR1,2	Fuses	
EF2	Fuse	
MIF	Motor for indoor fan	
MS	Motor for automatic swing louver	
MV	Micro-computer control expansion valve	
PCB1	Printed circuit board	
RSW1	Rotary switch for unit number setting (Ones digit)	
DSW6	Dip switch for unit number setting (Tens digit)	
RSW2	Rotary switch for refrigerant cycle number setting (Ones difit)	
DSW5	Dip switch for refrigerant cycle number setting (Tens digit)	
TB1, 2	Terminal block	
THM1~3, 5	Thermistor	
THM4	Optional connector (For remote temperature sensor)	
CN4~6, HA, PCN4	Reserved connector on PCB	

5.3 Printed circuit boards for RCD-FSN3 indoor units

The indoor unit PCB operates with five types of DIP switches and two rotary switches. The position is as follows: PCB1 (RCD-(0.8-6.0)FSN3

PCB1 (RCD-(4.0-6.0)FSN3

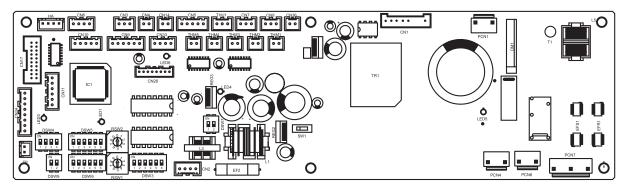

LED indicator		
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Red	PCB power supply

Connector indication		
PCN1	220 V transformer	
PCN7	Power supply (1-R, 3-S)	
THM1	Air inlet thermistor	
THM2	Air outlet thermistor	
THM3	Freeze protection thermistor	
THM4	Remote thermistor	
THM5	Gas pipe thermistor	
CN1	Connector for Indoor motor fan	
CN2	Connector to PCB1	
CN3	Optional input functions	

Connector indication	
CN7	Optional output functions
CN8	Optional output functions
CN10	Optional connector (for motion sensor)
CN33	Connector to PCB2
CN17	Swing louver motor 4
CN4~6	Reserved connectors
HA	
PCN4	
EFR1	Fuse
EF2	PCB2 fuse

Switch indication		
DSW3	Capacity code	
DSW4	Unit model code	
DSW5, RSW2	Refrigerant cycle number	
DSW6, RSW1	Unit number setting	
DSW7	Fuse re-establishing	

5.4 Printed circuit board for RPC-FSN3E, RPF(I), units

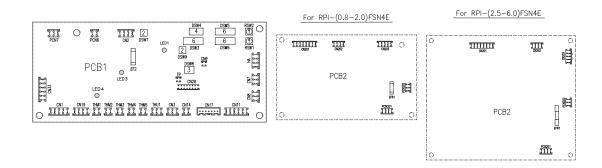


LED indicator		
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Green	PCB power supply

	Connector indication
PCN1	220 V transformer
PCN2	Indoor fan motor internal thermostat
PCN6	Drain pump motor (RPI)
PCN7	Power supply (1-R, 2-S, 3-N, 4-E)
PCN8	Capacitor
PCN10	Fan motor power supply
PCN11	Fan motor speed control
THM1	Air inlet thermistor
THM2	Air outlet thermistor
THM3	Liquid pipe thermistor
THM4	Remote thermistor (THM-R2 AE)
THM5	Gas pipe thermistor
EF3	Fuse
EF2	Fuse
EFS1	Fuse
EFR1	Fuse
CN1	Transformer (pins 1-2: 17.3 V/pins 3-4: 20.8 V)
CN2	Outdoor unit H-LINK control circuit
CN3	Optional input functions (only 2)
CN7	Optional output functions (only 2)
CN8	Optional output functions (number 1, number 2, only 1)
CN11	Expansion valve control
CN12	Remote control jumper connection for several units
CN13	SW remote control
CN14	Float switch
CN17	Swing louver motor

Switch indication		
DSW3	Capacity code	
DSW4	Unit model code	
DSW5, RSW2	Refrigerant cycle number	
DSW7	Fuse recovery and remote control selector	
DWS6, RSW1	Indoor unit number settings	

5.5 Printed circuit board for RPC-FSN3

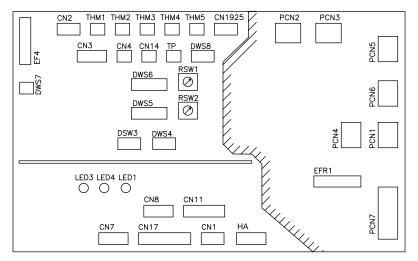


LED indicator		
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Green	PCB power supply

Connector indication		
THM1	Air inlet thermistor	
THM2	Air outlet thermistor	
THM3	Freeze protection thermistor	
THM5	Gas pipe thermistor	
PCN7	Terminal board	
CN1	Motor for indoor fan	
CN2	Terminal board 2	
CN3	Optional input functions	
CN7	Optional output functions	
CN8	Optional output functions	
CN10	Motion Sensor Kit connection	
CN11	Expansion valve control	
CN14	Float switch	
CN17	Swing louver motor	
CN36	Power source for drain pump	
EFS1	PCB2 fuse	
EFR1	PCB2 fuse	
EF1	PCB1 fuse	
EF4	PCB1 fuse	

Switch indication		
SW1	Comunication type	
DSW3	Capacity code	
DSW4	Unit model code	
DSW5, RSW2	Refrigerant cycle number	
DWS6, RSW1	Indoor unit number settings	
DSW7	Fuse re-establishing	

5.6 Printed circuit board for RPI(M)-(0.6-6.0)FSN4E


PCB1 LED indicator		
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Red	PCB power supply

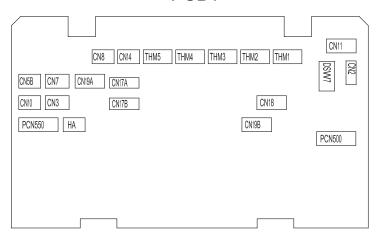
PCB2 LED indicator		
LED1	Yellow	PCB power supply

Connector indication		
PCN6	Drain pump	
PCN7	Printed circuit board 2	
PCN201	Terminal board	
PCN202	Printed circuit board 1	
THM1	Air inlet thermistor	
THM2	Air outlet thermistor	
THM3	Liquid pipe thermistor	
THM5	Gas pipe thermistor	
CN1	Printed circuit board 2	
CN2	Terminal board	
CN3	Not used	
CN11	Expansion valve	
CN14	Float switch	
CN17	Econofresh kit connection	
CN19	Printed circuit board 2	
CN201	Motor for indoor fan	
CN202	Printed circuit board 1	
CN203	Printed circuit board 1	
EFR1	PCB2 fuse	
EF2	PCB1 fuse	

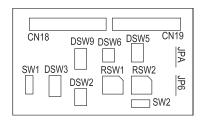
Switch indication		
DSW3	Capacity code	
DSW4	Unit model code	
DSW5, RSW2	Refrigerant cycle number	
DWS6, RSW1	Indoor unit number settings	
DSW7	Fuse re-establishing	
DSW8	Additional functions	
DSW9	0.6HP capacity setting	

5.7 Printed circuit board for RPI-(8.0-20.0)FSN3(P)E(-f) units

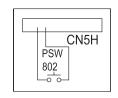
LED indicator		
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Green	PCB power supply


Connector indication		
PCN1	220 V transformer	
PCN2	Indoor fan motor internal thermostat	
PCN3	Fan stoppage alarm signal	
PCN6	Drain pump motor (RPI)	
PCN7	Power supply (1-R, 2-S, 3-N, 4-E)	
THM1	Air inlet thermistor	
THM2	Air outlet thermistor	
THM3	Liquid pipe thermistor	
THM4	Remote thermistor (THM-R2 AE)	
THM5	Gas pipe thermistor	
EFR1	Fuse	
EF4	Fuse	
CN1	Transformer (pins 1-2: 17.3 V/pins 3-4: 20.8 V)	
CN2	Outdoor unit H-LINK control circuit	
CN3	Optional input functions (only 2)	
CN7	Optional output functions (only 2)	
CN8	Optional output functions (number 1, number 2, only 1)	
CN11	Expansion valve control	
CN14	Float switch (RPI)	
CN17	Swing louver motor	

Switch indication		
DSW3	Capacity code	
DSW4	Unit model code	
DSW5, RSW2	Refrigerant cycle number	
DSW7	Fuse recovery and remote control selector	
DWS6, RSW1	Indoor unit number settings	

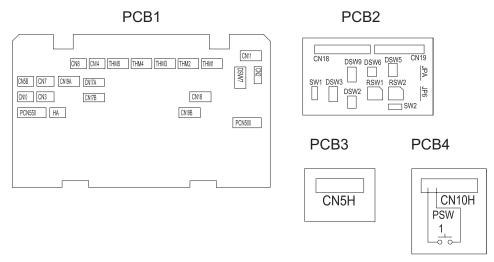

5.8 Printed circuit board for RPK-FSN(H)3M units

5.8.1 For RPK-(0.6-1.5)FSN(H)3M



PCB2

PCB3

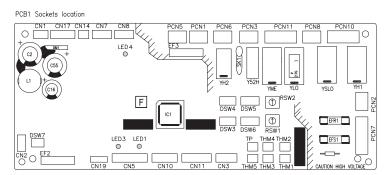


LED indicator		
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.
LED4	Green	PCB power supply

Connector indication		
PCN500	Terminal board 1	
PCN550	Motor for indoor fan	
THM1	Air inlet thermistor	
THM2	Air outlet thermistor	
THM3	Freeze protection thermistor	
THM5	Gas piping thermistor	
CN2	Terminal board 2	
CN3	Not used	
CN5A	Printed circuit board 3	
CN11	Micro-computer control expansion valve	
CN17A	Motor for automatic swing louver	
CN18	Printed circuit board 2	
CN19A	Printed circuit board 2	
CN19B	Printed circuit board 2	

Switch indication			
DSW3	Capacity code		
DSW4	Unit model code		
DSW5, RSW2	Refrigerant cycle number		
DWS6, RSW1	Indoor unit number settings		
DSW7	Fuse re-establishing		

5.8.2 For RPK-(2.0-4.0)FSN3M


LED indicator			
LED1	Red	This LED indicates the transmission status between the indoor unit and the remote control.	
LED3	Yellow	This LED indicates the transmission status between the indoor unit and the outdoor unit.	
LED4	Green	PCB power supply	

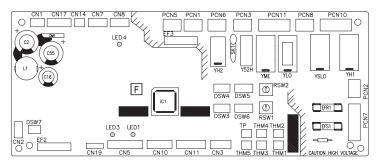

Connector indication					
PCN500 TB1					
PCN550	Motor for indoor fan				
THM1	Air inlet thermistor				
THM2	Air outlet thermistor				
THM3	Freeze protection thermistor				
THM5 Gas piping thermistor					
CN2	TB2				
CN5B	PCB3				
CN10	PCB4				
CN11	Micro-computer control expansion valve				
CN17A	Motor for automatic swing louver				
CN17B	Motor for automatic swing louver				
CN18	PCB2				
CN19A	PCB2				
CN19B	PCB2				

	Switch indication				
DSW3 Capacity code					
DSW4 Unit model code					
DSW5, RSW2 Refrigerant cycle number					
	DWS6, RSW1	Indoor unit number settings			
	DSW7	Fuse re-establishing			

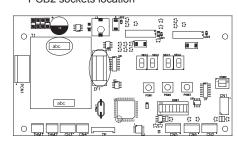
5.9 Printed circuit board for complementary systems

5.9.1 Printed circuit board for KPI

PCB1 LED indicator						
LED1 Red This LED indicates the transmission status between the indoor unit and the remote control.						
LED3	LED3 Yellow This LED indicates the transmission status between the indoor unit and the outdoor unit.					
LED4	LED4 Green PCB power supply					
	PCB2 LED indicator					
LED1	Yellow	H-LINK transmission 1				
LED2 Green PCB power supply						
LED3	Yellow	H-LINK transmission 2				


PCB1 Connector indication					
PCN1	PCN1 230V transformer				
PCN3	Operation signal for electric heater installation				
PCN7	TB1 and PCB2				
PCN10	Damper				
THM1	Air outlet thermistor				
THM2	Air inlet thermistor				
THM3	Liquid pipe thermistor				
THM5	Gas pipe thermistor				
CN1	Transformer				
CN2	TB1 and PCB2				
CN11	Expansion valve				
CN14	Float switch				
EFR1	PCB1 fuse				
EFS1	PCB1 fuse				
EF3	PCB1 fuse				

PCB2 Connector indication				
PCN1 TB1 and PCB1				
THM1	Coil inlet thermistor			
THM2	Coil outlet thermistor			
CN1	TB1 and PCB1			
CN2	CO2 sensor 4-20 mA			
CN3	CO2 sensor 0-10 V			
CN4	CO2 sensor ON/OFF			
CN5	Motor for fan 1			
CN6	Motor for fan 2			
EF1	PCB2 fuse			


Switch indication				
DSW3 Capacity code				
DSW4 Unit model code				
DSW5, RSW2 Refrigerant cycle number				
DWS6, RSW1 Indoor unit number settings				
DSW7 Fuse re-establishing				

5.9.2 Printed circuit board for DX-Interface

PCB1 sockets location

PCB2 sockets location

PCB1 LED indicator				
LED1	LED1 Red This LED indicates the transmission status between the indoor unit and the remote control.			
LED3 Yellow This LED indicates the transmission status between the indoor unit and the outdoor unit.				
LED4	Green	PCB power supply		

PCB2 LED indicator				
LED1 Yellow H-LINK transmission 1				
LED2 Green PCB power supply				
LED3	Yellow	H-LINK transmission 2		

PCB1 Connector indication				
PCN1	230V transformer			
PCN2	TB1			
PCN6	TB1			
PCN7	TB1 and PCB2			
PCN10	TB1			
PCN11	TB1			
THM1	Coil inlet thermistor			
THM2	Coil outlet thermistor			
THM3	Liquid pipe thermistor			
THM5	Gas pipe thermistor			
CN1	Transformer			
CN2	TB2 and PCB2			
CN11	TB1			
CN14	TB2			
EFR1	PCB1 fuse			
EFS1	PCB1 fuse			

PCB2 Connector indication						
PCN1	PCN1 TB1 and PCB1					
THM1	Optional air temperature sensing					
THM2	Optional air temperature sensing					
CN1	TB2 and PCB1					
CN2	TB2					
CN3	TB2					
CN4	TB2					
CN5	TB2					
CN6	TB2					
EF1	PCB2 fuse					

Switch indication			
DSW1	Optional functions		
DSW2	End resistance		
DSW3	Capacity code		
DSW4	Unit model code		
DSW5, RSW2	Refrigerant cycle number		
DWS6, RSW1	Indoor unit number settings		
DSW7	Fuse re-establishing		

5.10 Safety protection and control

Setting control and safety devices for indoor units

Model			RCI-FSN4	RCIM-FSN4(E)
For the evaporator fan	Switch off	°C	80 ±4 (*)	100±4 (*)
motor: internal thermostat	Switch on	°C		
For the control circuit: fuse capacity	-	А	5	5
Freeze Protection	Cut-Out	°C		0
Freeze Frotection	Cut-in	°C		14
Thermostat differential		°C		2

Model		RCD	RPC-FSN3E	RPC-FSN3	RPI(M)	RPI-(8.0/10.0)FSN3E(-f) RPI-(16.0/20.0)FSN3PE(-f)	RPK	RPF(I)	
For the evaporator	Switch off	°C	130±5	100 (*)	100 ₋₁₀ /+15	110±10 (**)	140±10	400 (*)	130±5
fan motor: internal thermostat	Switch on	°C	83±15	90±15	95 ₋₁₀ / +15	90±10(**)	90±15	100 (*)	93±15
For the control circuit: fuse capacity	-	А	5	5	5	5	5	5	5

(*) Chip Ceramic PTC (Autoreset, non-adjustable)

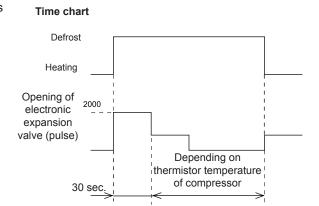
5.11 Indoor electronic expansion valve control

- After supplying power, the electronic expansion valve closes fully before starting to open.
- 2 When the compressor stops, the electronic expansion valve closes fully to set its opening.
- 3 When it starts (the compressor is activated), the electronic expansion valve opens to a specific degree during cooling operation, 1 minute.
- 4 During heating operation, the electronic expansion valve opens to a specific degree.
- 5 During defrost, the electronic expansion valve opens to a specific degree, as indicated in the graph.
- 6 Normal opening of the electronic expansion valve.

Cooling operation

- 1 Superheat temperature setting required:
 - a. Heat exchanger SH:
 - 3 HP => SH = 0 °C
 - 4 HP=> SH = -4 °C
 - b. Heat exchanger SH = Tg TL

Where,


- Tg: Indoor gas pipe temperature.
- TL: Indoor liquid pipe temperature.
- · SH: Superheat.
- 2 Simulated PI control for the electronic expansion valve, the opening of this valve is controlled so that the SH temperature of the heat exchanger can reach the set temperature.

Heating operation

- 1 Definition of the set temperature:
 - a. Heat exchanger SH=Ti < TL < 45 + 0.5 x Ta

Where.

- TL: Indoor liquid pipe temperature.
- Ti: Indoor air inlet temperature.
- Ta: Outdoor temperature.
- 2 Simulated PI control for the electronic expansion valve. The opening of the electronic expansion valve is controlled so that the temperature of the indoor liquid pipe can reach the set temperature.

6. Optional functions

Index

6.1	Indoor units input and output signals	200
	6.1.1 Available ports	200
	6.1.2 Optional signal configuration	202
	6.1.3 Programming with remote controller	204
	6.1.4 Description of optional input signals	204
	6.1.5 Description of optional output signals	208
6.2	Optional functions through Remote control	209
	6.2.1 List of optional remote control functions. (PC-ARFPE)	209
	6.2.2 Description of the optional remote control functions (PC-ARFPE)	217
	6.2.3 Optional functions for PC-ARH remote controls	225
	6.2.4 Settings on wireless remote controls	226
6.3	Complementary systems	227
	6.3.1 KPI and DX-Interface	227
	6.3.1.1 DX-Interface	228
	6.3.2 Econofresh Kit	230

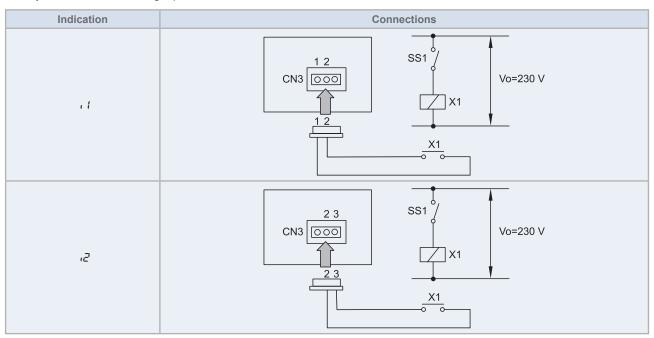
6.1 Indoor units input and output signals

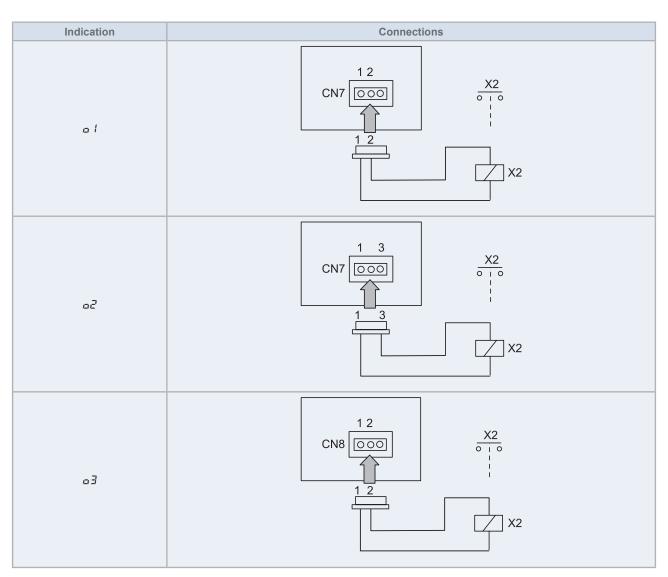
6.1.1 Available ports

The system has eight optional input signals and six output signals. Both types of signal are programmed into the indoor unit PCB: connector CN3 for input signals and connectors CN7 and CN8 for output signals.

Output connector CN7 has two ports and output connector CN8 has one port, which are used to configure three output options of the eight available in the system.

The output signal connection is a mere example.


The system has the following input and output ports:


Indication		Port setting on the indoor unit PCB	Remarks	Outlet
	. 1	CN3 1-2	1 0 0 0 0 3 0	Contact
Input	űŽ	CN3 2-3	1 0 2 0 0 0	Contact
	ا م	CN7 1-2	1 0 X 2 0 3 0	12 Vdc
Output	o2	CN7 1-3	1 0 X 2 0 3 0	12 Vdc
	Εα	CN8 1-2	1 0 X 3 0	12 Vdc

□፫ Configuration not available for RPI-(16.0/20.0)FSN3PE(-f) units.

The system has the following input connections:

Comp	onent	Manufacturer or specifications	Remarks
Auxiliary	relay (X2)	Reduced power relay model OMRON: MY1F or equivalent	Voltage between the relay terminals 12 Vdc, 75 mA
Contact (SS1)	(x1) (example)	Manual type	Voltage between the contactor terminals 230 V, 5 mA
3-pin connector cable		Optional part PCC-1A (capable of connecting the connector (JST XHP-3))	Five cables with connectors in one group
Cable (control)	Voltage: 12 Vdc	0.5 mm ²	
Cable (power)	Voltage: 230 V	2.0 mm ²	

Recommendations for wiring installation

- Keep the CN3 connector cables as short as possible.
- Try not to pull on the cable along the power line. The cables should be laid separately at a distance of over 30 cm. Cable crossing is feasible.
- Where the cable along the power line is pulled, insert the cables through a metal pipe, earth one end of the pipe and install a safety device such as an earth leakage breaker or smoke detector.
- It is recommended to install safety devices such as an electric leakage breaker, etc, (because this is unattended

Returning from optional function setting mode

Press " (return) to return to the normal mode (Operation Mode Indication).

Indoor unit inputs/outputs factory settings

Connectors CN3, CN7 and CN8 are factory-set with the following optional functions.

	Connector number	Connector terminal	Function	Factory settings
Input CN3		1–2	03	Function 1. Remote unit On/Off
		2–3	06	Cancellation of commands from the remote control after a forced stoppage
	CN7	1–2	01	Operation signal
Output		1–3	02	Alarm signal
CN8 (Not for RPK) 1–2		1–2	06	Thermostat enabled signal during heating

(*) If the Econofresh kit is connected, CN3 terminals 1 and 2 are locked for the enthalpy sensor or the CO2 sensor.

6.1.2 Optional signal configuration

The following tables describe the optional signals available on indoor units.

Optional input signals

If an input signal is set, the on-screen display on the remote control automatically changes to the following.

Indication	Input signal	Application	Port
00	Not set	Not set	CN3
<i>0</i> (Control by field- supplied room thermostat (cooling)	This signal controls the unit through an external thermostat. **NOTE** It can reduce summer cooling problems in certain applications**	CN3
02	Control by field- supplied room thermostat (heating)	This signal controls the unit through an external thermostat. **NOTE** It can reduce problems caused by indoor air stratification.	CN3
03	Function 1: remote on/off of the unit (by contact)	This signal controls the starting and stopping of the system from a remote location. NOTE It is extremely practical in hotels and offices to control the indoor units from the building management system.	CN3
04	Function 2: unit on (by pulse)	This signal controls the starting of the system from a remote location. NOTE It is extremely practical in hotels and offices to control the indoor units from the building management system.	CN3
05	Function 2: unit stoppage (by pulse)	This signal controls the stoppage of the system from a remote location. NOTE It is extremely practical in hotels and offices to control the indoor units from the building management system.	CN3

Indication	Input signal	Application	Port
05	Cancellation of commands from the remote control after a forced stoppage	This signal stops the indoor unit and cancels the commands from the remote control while it is enabled.	CN3
רם	Cooling or heating mode setting	This function controls operating mode changes from a remote location.	CN3
08	Up/down input signal for grille (not available)	Not available	CN3

Optional output signals

If an input signal is set, the on-screen display on the remote controller automatically changes to the following.

Indication	Output signal	Application		Port
00	Not set	Not set	•	CN7 or CN8
			•	Only CN7 for RPK units
D (Operation signal	This signal permanently controls the status of the unit. **NOTE**		CN7 or CN8
l l	Operation signal		•	Only CN7 for RPK units
		It is extremely useful for centralised applications.		
		This signal enables devices that protect and indicate any faults in the unit.		
02	Alarm signal		•	CN7 or CN8
UL.	Alaim signal	I NOTE	•	Only CN7 for RPK units
		It is extremely useful for rooms in which air conditioning must remain on at all times.		
		This signal controls the status of the compressor.		
				CN7 or CN8
03	Cooling signal	i NOTE		Only CN7 for RPK units
		It is extremely useful for controlling the thermostat switched off on indoor units.		
84	Thermo-ON signal	It is extremely useful for controlling requests by the indoor unit to	•	CN7 or CN8
רע	during cooling	enable the compressor.	•	Only CN7 for RPK units
<i>a</i> s	Heating signal	This signal controls the status of the compressor. It is extremely	•	CN7 or CN8
	Troduing digital	useful for controlling the thermostat switched off on indoor units.	٠	Only CN7 for RPK units
05	Thermo-ON signal	It is extremely useful for controlling requests by the indoor unit to	•	CN7 or CN8
	during heating	enable the compressor.	•	Only CN7 for RPK units

Time

6.1.3 Programming with remote controller

For a complete and detailed explanation regarding the programming with the remote controller, refer to the "Remote controller PC-ARFPE installation and operation manual".

6.1.4 Description of optional input signals

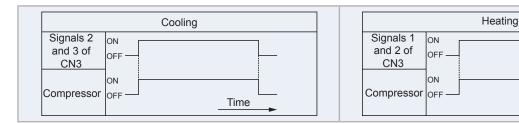
Control by field-supplied room thermostat

On-screen display: ☐ I or ☐ 2.

When a field-supplied room thermostat is used instead of the inlet thermistor on the indoor unit, connect the wiring and use the materials as indicated in "6.1.1 Available ports".

Example:

- · Room thermostat Input (for Cooling) is set to terminals 2 and 3 of CN3
- Room thermostat Input (for Heating) is set to terminals 1 and 2 of CN3


Operation

• Cooling operation: Compressor is ON by closing terminals 2 and 3 of CN3

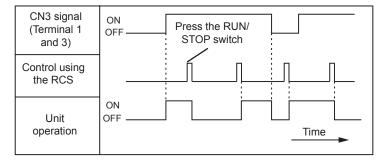
Compressor is OFF by opening terminals 2 and 3 of CN3

· Heating operation: Compressor is ON by closing terminals 1 and 2 of CN3

Compressor is OFF by opening terminals 1 and 2 of CN3

Specifications for field-supplied room thermostat:

- Manufacturer or type: equivalent to YAMAKATE R7031P005, R7031Q005.
- · Contactor charge: 12 Vdc
- · Difference of over 1.5 degrees.
- Do not use a mercury thermostat.
- The remote control must remain connected to the unit. When the power supply is reconnected, start the unit by pressing the on button. The compressor will then run under the control of the field-supplied thermostat. All other functions are controlled in the normal manner via the remote control.


Function 1: remote on/off of the unit

On-screen display: \$\mathcal{I}\$ \$\mathcal{I}\$.

This is an optional on/off signal that uses the signal levels ON and OFF. Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminals 1 and 3 of CN3)

i NOTE

- · When the unit is started using the remote ON/OFF switch, the fan speed depends on the mode stored in the remote control.
- The collection of signals during the first 10 seconds after connecting the power supply is not available due to component initialization. Do not change the signal in this period.
- · Operation priority is given to the remote on/off signal or to the remote control, whichever is transmitted last.
- If multiple indoor units are connected to the same transmission wiring for remote control switch, input the signal to any of these indoor
 units. When the transmission wiring is not used in a multiple indoor unit system for simultaneous operation, input the signal to the
 main indoor unit.

Function 2: remote switching on of the unit (pulse signal input)

On-screen display: 되닉.

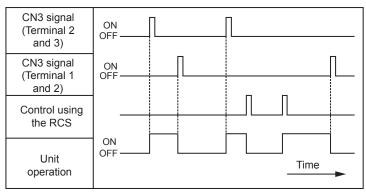
This is an optional remote on/off signal that uses the pulse signal.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 2 and 3 of CN3)

Function 2: remote switching off of the unit (pulse signal input)

On-screen display: \$\Pi\$5.

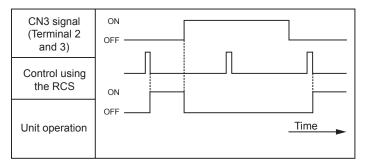
This is an optional remote off signal that uses the pulse signal.


If a signal is input during the stoppage of the system, it remains unchanged.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 1 and 2 of CN3)

A time chart with the uses of functions 2 is shown below.

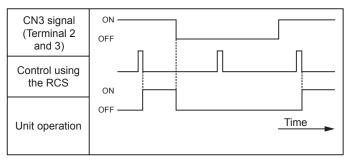
The collection of signals during the first 10 seconds after connecting the power supply is not available due to component initialization. Do not change the signal in this period.


Cancellation of commands from the remote control after a forced stoppage

On-screen display: \$\mathcal{I} \mathcal{E}\$.

It is possible to stop the air conditioning systems using the signal from a building management system. In this case, the individual commands transmitted from the remote control are cancelled.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 2 and 3 of CN3)


A time chart with the uses of the function is shown below.

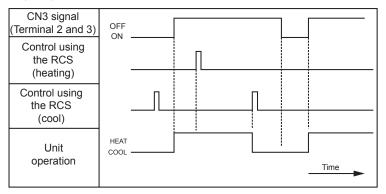
The collection of signals during the first 10 seconds after connecting the power supply is not available due to component initialization.

With this optional function, contact B can be used through the optional setting of the remote control. The time chart is shown below, which provides information on when contact B can be used. See "6.2.1 List of optional remote control functions. (PC-ARFPE)" for further details on contacts A and B.

This function is not available after the manual (forced) stoppage because commands from remote control switch are cancelled. (Remote control switch is required).

Cooling or heating mode setting

On-screen display: \$\mathbb{I}\sqrt{1}\$.

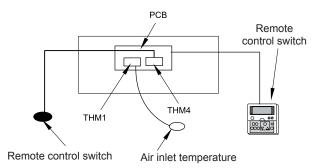

This optional signal can be used to change the heating or cooling operating mode by sending a contact signal from outside the unit. The operating mode is controlled by the field-supplied switch or by the remote control, whichever is used last.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports".

A time chart with the uses of the functions is shown below.

$oldsymbol{i}$ note

- The collection of signals during the first 10 seconds after connecting the power supply is not available due to component initialization.
- This function is not available after the manual (forced) stoppage because commands from remote control switch are cancelled. (Remote control switch is required).



Control by use of a remote temperature sensor

On-screen display: \$\mathcal{I} \mathcal{B}\$.

The following functions are available when an optional remote temperature sensor is used:

- The unit is controlled by the average temperature of the air inlet thermistor and the remote temperature sensor.
- When the discharge air temperature exceeds 60 °C, the fan speed increases from medium to high or from low to medium.

i NOTE

- The remote control thermistor cannot be used if a remote temperature sensor is used.
- The heating temperature calibration function is automatically cancelled in heating operation.
- If a remote temperature sensor is used, it must be positioned according to the following requirements:
 - It must be in a position where the average room temperature can be detected and where the outdoor air generated when doors
 are opened and closed does not affect the room temperature.
 - It must be in a position where the thermistor is not directly exposed to sunlight or where there are no heat sources nearby.

6.1.5 Description of optional output signals

Picking up of the operation signal

On-screen display: 🛭 1.

This optional signal is used to pick up the operation signal. Thanks to this function, the operation signal can be checked from a remote location and, for example, the outdoor air intake fan operation can be stopped.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 1 and 2 of CN7)

The auxiliary relay contact X2 closes when an operation signal is transmitted.

Alarm signal

On-screen display: □2.

This optional signal is used to pick up the activation of safety devices. The signal is normally displayed on the remote control. This function is not available under abnormal transmission conditions.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 1 and 3 of CN7)

The auxiliary relay contact X2 closes when an operation signal is transmitted.

Cooling operation signal

On-screen display: ☐ 3.

This optional signal is used to pick up the cooling operation signal. The X2 auxiliary relay contact closes when the cooling operation signal is enabled, regardless of whether the thermostat signal is enabled or disabled.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 1 and 3 of CN7)

Thermostat enabled signal during the cooling process

On-screen display: ☐ 4.

This optional signal is used to pick up the thermostat enabled signal for the compressor operating during the cooling process (thermo-ON).

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 1 and 3 of CN7)

The X1 auxiliary relay contact closes when the thermostat signal is enabled during cooling mode.

Heating operation signal

On-screen display: \$\alpha 5\$.

This optional signal is used to pick up the heating operation signal. The X2 auxiliary relay contact closes when the heating operation signal is enabled, regardless of whether the thermostat signal is enabled or disabled.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminal 1 and 3 of CN7)

Thermostat enabled signal during the heating process

On-screen display: \$\mathcal{I} \mathcal{E}\$.

This optional signal is used to pick up the thermostat enabled signal for the compressor operating (thermo-ON) during the heating process and to control, for example, a circulation pump or humidifier.

Connect the wiring and use the materials as indicated in "6.1.1 Available ports". (Example: terminals 1 and 2 of CN8)

The X2 auxiliary relay contact closes when the thermostat signal is enabled during heating mode.

6.2 Optional functions through Remote control

The next list refers to the optional functions available to indoor units from the remote control switch. Note that not all remote control switch have access to all the optional functions. Check the Technical Catalogue for Indoor units remote controls.

6.2.1 List of optional remote control functions. (PC-ARFPE)

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description
	Correction of setting		00	Normal (Setting Temperature + 4°C)	
	temperature in heating		01	Release (Setting Temperature)	
	Models:	0	02	Setting Temperature + 2°C	
	RCD-FSN3 RCIM-FSN4(E)		03	Setting Temperature + 3°C	
	KOIW-I SIN4(L)		04	Setting Temperature + 1°C	
	Correction of setting temperature in heating		00	Normal (Setting Temperature + 4°C or Setting temperature + 2°C)	
	Models: RPI-FSN3(P)E			Standard setting. It increases the temperature +4°C	This function is used to adjust the difference of temperature between
b1	RPC-FSN3E RPF(I)-FSN2E RPI-FSN4E	0	01	Release (Setting Temperature) Removal	the setting temperature of the remote control switch and the inlet air temperature of the indoor unit.
	RPIM-FSN4E(-DU)		02	Setting Temperature + 2°C Increases the temperature +2°C	This is useful when the inlet air thermistor is not placed inside the indoor unit.
	Correction of setting temperature in heating		00	Normal (Setting Temperature + 4°C Standard setting. Increases the temperature +4°C	
	Models:	0	01	Release (Setting Temperature)	
	RCI-FSN4 RPC-FSN3 RPK-FSN3M			Removal	
			02	Setting Temperature + 2°C It increases the temperature +2°C (1).	
b2	Circulator function at	0	00	Not activated function	This function means that the fan unit remains running after the air conditioning system has stopped to prevent the air in the room from stratifying.
DZ.	heating Thermo-OFF		01	Activated function	
			00	Not activated function (C7 setting possible)	This function is used to allow the setting of C7: protect the
b3	Forced compressor operation for at least three minutes through C7 setting	0	01	Activated function (C7 setting not possible)	compressor, preventing it from being started or stopped for periods of less than three minutes. Not available for models: RCIM-FSN4(E) RCD-FSN3
			00	Standard (1200 h factory setting)	
			01	100 hours	This function is used to modify the
b4	Change the filter cleaning period.	0	02	1200 hours	period during which the remote control indicates the air filter
	poriou.		03	2500 hours	replacement.
			04	No indication	
			00	Not activated function	Once the unit operating mode has
b5	Fixing of operation mode	Х	01	Activated function	been selected, this function prevents it from being modified from the remote control.
b6	Fixing of setting	X	00	Not activated function	Once the unit temperature has been selected, this function prevents from
DO	temperature	^	01	Activated function	being modified from the remote control.

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description	
	Fixing of operation as	.,	00	Not activated function	This function is available to use	
b7	exclusive cooling mode only	X	01	Activated function	cooling mode only and to prevent heating mode from being enabled.	
b8	Automatic COOL/HEAT	X	00	Not activated function	This function allows the automatic change from the cooling to the	
DO	operation	^	01	Activated function	heating mode for the units with the same refrigerant cycle.	
			00	Not activated function	Once the unit fan speed has been selected, this function prevents from	
b9	Fixing of fan speed	X	01	Activated function	being modified from the remote control.	
bA	Not available	Х	"" Permanent	Not available	-	
			00	Standard setting. No compensation		
bb	Cooling temperature compensation due to uneven load	X	01	It decreases the temperature -1°C	This function is used to obtain longer cooling periods.	
	unever load		02	It decreases the temperature -2°C		
bC	Not available	_	00	Not available	_	
			01	Use at 00 conditions		
bd	Not available	_	00	Not available Use at 00 conditions	-	
bE	Not available	_	00	Not available Use at 00 conditions	_	
			01	Not available		
C1	Not available	_	01	Use at 00 conditions	-	
C2	Not available	-	"" Permanent	Not available	-	
СЗ	Not available	0	00	Not available Use at 00 conditions	-	
C4	Drain pump in	0	00	Not activated function	This function is used to activate the drain pump in heating mode. Not available for models:	
	heating mode		01	Activated function	RCIM-FSN4(E) RCD-FSN3	
	Static pressure selection		00	Standard static pressure (factory set)		
	Models RPI-FSN4E	0	01	High static pressure	This function is used to change the static pressure of the RPI units from the remote control.	
	RPIM-)FSN4E(-DU) RPI-FSN3(P)E		02	Low static pressure	and remote definition.	
			00	Not available		
C5	Increasing fan speed		01	Hi Speed 1 ⁽²⁾		
	Models RPC-FSN3E RPF(I)-FSN2E RCI-FSN4 RPC-FSN3 RPK-FSN3M RCD-FSN3 RCIM-FSN4(E)	0	02	Hi Speed 2 ⁽²⁾	This function is used to change the indoor units fan speed installed in high ceilings.	
C6	Hi speed at heating	0	00	Not activated function	This function is used to increase the fan speed when the thermostat	
00	Thermo-OFF		01	Activated function	reaches the set temperature in heating using function C5.	

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description	
C7	Release Compressor 3	0	00	Activated function	Function available depending on the	
07	min OFF Guard	U	01	Not activated function	settings in b3.	
			00	Not available (Suction thermistor)		
	Selection of the		01	Air temperature control using the remote control thermistor	This function determines the	
	thermistor of remote control switch	0	02	Air temperature control using the average value of the air inlet thermistor and the remote control thermistor	thermistor to control the air temperature.	
	Remote Sensor Selection			Suction + Remote Control / 2		
C8 (7)	is connected Models RPI-FSN3(P)E RPC-FSN3E RPF(I)-FSN2E RCI-FSN4 RPC-FSN3		00, 01, 02	Air temperature control using remote sensor		
	Remote Sensor Selection is connected Models RPK-FSN3M	0	00, 01, 02	Air temperature control using the average value of the air inlet thermistor and the remote control thermistor		
	Remote Sensor Selection is connected Models RPI-FSN4E		00, 02	Air temperature control using the average value of the air inlet thermistor and the remote control thermistor		
	RPIM-FSN4E(-DU) RCD-FSN3 RCIM-FSN4(E)		00,01	Air temperature control using remote sensor		
C9	Not available	-	"" permanent	Not available		
CA	Not available	_	"" permanent	Not available	-	
Cb	Selection of forced	×	00	Forced stoppage input: A contact	This function determines the logic operation for the forced stoppage	
CD	stoppage logic		01	Forced stoppage input: B contact	contacts.	
СС	Not available		00	Not available	_	
	Not available	_	01	Use at 00 conditions	_	
Cd	Not available	0	00	Not available		
Cu	Not available		01	Use at 00 conditions		
	Fan stop at heating		00	Air flow volume: Low		
CE	thermo-off	0	01	If C8 setting 00: Slow If C8 setting 01 or 02: fan operation	n stops	
			00	Standard (7 steps)		
CF	Modification of Louver Swing Range	0	01	Cold draft prevention (5 steps) (Lower 2 steps cut off)	This function adjusts the angle of the	
	Series RCI, RPC, RCD, RPK		02	High ceilings (5 steps) ⁽³⁾ (Higher 2 steps cut off)	air outlet louver.	
			00	Not activated function	This function stores the unit settings	
d1	Power supply ON/OFF 1	0	01	Activated function	in the event of a power cut. The unit is restarted when the power is reestablished.	
d2	Not available	Х	"" Permanent	Not available	_	
			00	Not activated function	This function is used to restart the	
d3	Power supply ON/OFF 2	0	01	Activated function	unit after a power cut taking more than 2 seconds.	

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description	
			00	Not activated function		
d4	Cooling air temperature drop prevention. Models, RPI-FSN3(P)E RPC-FSN3E RPF(I)-FSN2E RCI-FSN4 RPC-FSN3 RPK-FSN3M RPI-FSN4E RPIM-FSN4E(-DU)	drop prevention. Models, RPI-FSN3(P)E RPC-FSN3E RPF(I)-FSN2E RCI-FSN4 RPC-FSN3 RPK-FSN3M RPI-FSN4E		Activated function	This function changes the cooling operating conditions to avoid cold draughts. Not available for models RCD-FSN3 RCIM-FSN4(E) (Use as 00 conditions)	
d5	Prevention of decrease of heating discharge air	0	00	Not activated function	This function prevents a drop in the air temperature by decreasing the fan	
	temperature		01	Activated function	speed, apart from the settings on the remote control.	
			00	Not activated function	This function saves energy when the outdoor temperature is lower than the air conditioning charge.	
d6	Room temperature control for energy saving	0	01	Activated function	Function of the outdoor unit Not available for models RCD-FSN3 RCIM-FSN4(E) (Use as 00 conditions)	
			00	6°		
			01	120		
			02	18°		
	_		03	24°	This function is used to set the fresh	
d7	Econofresh: OA Damper minimum opening	0	03	30°	outdoor air damper minimum opening	
	,g		-	36°	selection.	
			05		-	
			06	42°	_	
				07	Standard Process	This function allows to the outdoor air damper to be opened in All Fresh
E1	Econofresh cooling mode	0	01/02	All-fresh	Operation mode. This mode able to fully open the outdoor air damper (according to the control system)	
E2	Econofresh enthalpy	0	00	Not activated function	This function selects the enthalpy	
LZ	sensor		01	Activated function	sensor input.	
E3	Not available	0	00	Not available		
LJ	INOL available		01	Use at 00 conditions	-	
E4	Econofresh: CO2 sensor	0	00	Standard	This function selects the CO2 gas	
			01/02	CO2 sensor	sensor input.	
E5	Not available	0	00	Not available	_	
	Trot available		01	Use at 00 conditions		
	E6 Indoor fan operation time after cooling operation stoppage		00	Not activated function	This function prevents the condensation accumulation in the unit	
E6		0	01	60 minutes	by keeping the fan running after it is	
			02	120 minutes	switched off.	
E7	Not available	0	00	Not available	_	
			01	Use at 00 conditions		
E8	Fan operation control at	0	00	Not activated function	This function reduces the unit fan	
	heating Thermo - OFF		01	Activated function	speed to prevent cold draughts.	
E9	Not available	0	00	Not available Use at 00 conditions	-	

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description
	A1 (21 1 1		00	Not available	
EA	Not available	0	01	Use at 00 conditions	-
			00	Not activated function	This function decreases the unit fan
Eb	Fan operation control at	0	01	Low	speed to reduce the spreading of
	cooling Thermo-OFF		02	Slow	smells and humidity.
	Forced Thermo-ON		00	Not activated function	This function is used to force
EC	stoppage at cooling	0	01	Available	stoppage when cooling is complete.
			00	Not available	
Ed	Not available	0	01	Use at 00 conditions	-
	Automatic fan speed		00	Not activated function	This function limits the unit operation by automatically controlling the fan
EE	control	0	01	Activated function	speed when the room temperature is close to the set temperature.
	Automatic indoor fan		00	Not activated function	·
EF	speed mode (supporting High H) Models RPI-FSN4E RPIM-FSN4E(-DU) RCD-FSN3 RCIM-FSN4(E)	0	01	Activated function	
F0	Not available	-	-	Not available	
			00	Not activated function	
			01	1 h	
	Automatic OFF timer setting		02	2 h	T
			03	3 h	This function is used to set the automatic timer to switch off when the unit has been started by remote
	Models RCI-FSN4		04-24	(04-24) h	
	RPC-FSN3	X	0A	30 min	control.
	RPK-FSN3M RPI-FSN4E		0B	90 min	(Do not set the functions "0C"-"0F" when two remote control switches are used in the same remote control group)
	RPIM-FSN4E(-DU)		0C	40 min	
	RCD-FSN3		0D	45 min	
F1	RCIM-FSN4(E)		0E	50 min	
			0F	55 min	7
			00	Not activated function	
	Automatic OFF timer		01	1 h	7
	setting		02	2 h	This function is used to set the automatic timer to switch off when
	Models	X	03	3 h	the unit has been started by remote
	RPI-FSN3(P)E RPC-FSN3E		04-24	(04-24) h	control.
	RPF(I)-FSN2E		0A	30 min	
()	,,		0B	90 min	
	Pomoto control main/sub		00	Main (Master Remote Control)	This function is used when two
F2	Remote control main/sub setting	X	01	Sub (Slave Remote Control)	remote controls are installed in a system.
F2	Automatic reset of setting	V	00	Not activated function	This function releases the fixed temperature setting after a certain time to limit unit operations and save energy.
F3	temperature ⁽⁴⁾	X	01	Activated function	
			00	30 minutes (factory setting)	
F4	Automatic reset time	X	01	15 minutes	This function is used to set the automatic reset time with the
			02	60 minutes	temperature setting
			03	90 minutes	

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description
			19	19 °C	
			20	20 °C	
			21-24	(21-24) °C	This function is used to set automatic
F5	Automatic reset temperature for cooling	X	25	25 °C (factory setting)	temperature reset in FAN/COOL/DRY modes.
			26-28	(26-28)°C	modes.
			29	29°C	
			30	30°C	
			17	17°C	
	Automatic reset		18-20	(18-20)°C	
F6	temperature for heating	×	21	21°C (factory setting)	This function is used to set automatic temperature release in HEAT mode.
	Heating Automatic Return Temperature		25-28	(25-28)°C	temperature release in FIEAT mode.
	Return remperature		29	29°C	
			30	30°C	
	Operation stoppage		00	Not activated function	
F7	prevention by remote control switch operational error (5)	X	01	Activated function	-
			00	Not activated function	
F8	Lock function for operation mode selection	X	01	Activated function (factory setting)	This function is used to prevent changes to the operating mode.
			00	Not activated function	
F9	Lock function for temperature setting	Х	01	Activated function (factory setting)	This function is used to prevent changes to the temperature setting.
	FA Lock function for fan speed selection		00	Not activated function	This function is used to prevent
FA		X	01	Activated function (factory setting)	changes to the fan speed.
	Lock function for swing	.,	00	Not activated function	This function is used to prevent changes to automatic louver operations.
Fb	louver operation	X	01	Activated function (factory setting)	
			00	19°C (Standard)	
	Lawer limit of catting		01	Lower limit 20°C	_
	Lower limit of setting temperature for cooling		02	Lower limit 21°C	This function is used to define a lower
FC	Minimum value of setting	X	03-08	Lower limit (22~27)°C	temperature setting limit for FAN/
	temperature in cooling		09	Lower limit 28°C	COOL/DRY modes.
			10	Lower limit 29°C	
			00	30°C (Standard)	
			01	Lower limit 29°C	This function is used to define an
			02	Lower limit 28°C	upper temperature setting limit for HEAT mode.
Fd	Upper limit of setting	X	03-10	Lower limit (27~20)°C	RPC-FSN3E
	temperature for heating		11	Lower limit 19°C	RPF(I)-)FSN2E
			12	Lower limit 18°C	RPI-FSN3(P)E models up to 20°C
			00		
FE Not available	Not available	_	01	Not available	_
		_	02	Use at 00 conditions	
			00	Not available	
FF	Not available	_	01	Not available Use at 00 conditions	
⊔4	Not available		00	Not available	
H1	Not available	_	01	Use at 00 conditions	
			00	Display	This function is used to display or
H2	Indication of hot start	0	01	Hide	hide the automatic control indication.

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description
			00	Operating mode change disabled (factory setting)	This function is used to configure restrictions to the HEAT mode.
H3	Operating mode change restriction	0	01	Operating mode set by the central control + FAN mode	Not available for models: RPI-FSN3(P)E RPC-FSN3E
			02	Unlimited operating mode	RPF(I)-FSN2E RCIM-FSN4(E) RCD-FSN3
	Central Equipment		00	Not activated function	Not available for models: RPI-FSN3(P)E
H4	Operation during Forced Stop	0	01	Activated function	RPC-FSN3E RPF(I)-FSN2E RCIM-FSN4(E) RCD-FSN3
			00	Air conditioning only	
	KPI: Operating modes for		01	Ventilation only	This function is only available for the
	the ventilation unit with energy recovery	0	02	Air conditioning + ventilation	ventilation unit with energy recovery.
			00	Not activated function	Not available for models:
J1	Not available	-	01	Activated function	RPI-(8.0-20.0)FSN3(P)E(-f) RPC-(3.0-6.0)FSN3E RPF(I)-(1.0-2.5)FSN2E
12	J2 Not available	-	00	Not activated function	Not available for models: RPI-(8.0-20.0)FSN3(P)E(-f)
J2			01	Activated function	RPC-(3.0-6.0)FSN3E RPF(I)-(1.0-2.5)FSN2E
J3	Run indicator color	_	00	Green	
		arrandicator color	01	Red	
		X	00	Not available (Use as 00 conditions) Not available	
J4	Not available		01 02		
			00		
J5	Not available	-	01	(Use as 00 conditions)	
			00	Not available	
J6	Not available	-	01	(Use as 00 conditions)	
			00	Not available	
J7	Not available	_	01	(Use as 00 conditions)	
J8	Eco-operation (6)	o-operation (6)	00	Not activated function	Not available for models: RPI-(8.0-20.0)FSN3(P)E
			01	Activated function	RPC-(3.0-6.0)FSN3E RPF(I)-(1.0-2.5)FSN2E
J9	Not available	-	00 01	Not available (Use as 00 conditions)	
JA	Not available	-	_	Not available (Use as 00 conditions)	
Jb	Not available	_	00	Not available (Use as 00 conditions)	
K1	Not available	_	01 _	Not available	
K2	Not available	_	_	(Use as 00 conditions) Not available (Use as 00 conditions)	
K3	Not available	-	-	Not available (Use as 00 conditions)	
K4	Not available	_	_	Not available (Use as 00 conditions)	

Elem.	Optional function	Individual setting	Settings	Setting conditions	Description
	Human sensor detection		00	Standard	
	level		01	High	
K5	Models RCD-FSN3 RCIM-FSN4(E) RCI-FSN4 RPC-FSN3	_	02	Low	
	Selection of available		00	ALL	
	operation modes upon selection of either remote		01	COOL/DRY	
	control thermo or remote		02	HEAT	
K6		03	ALL		

When a particular model is not specified, the Optional functions described in the above table are suitable for all the models in this manual.

- O: allows for individual setting.
- X: the setting is made for all outdoor units.
- -: not used.
- (1) Setting 02 is not available on all indoor units.
- (2) On RPI units: 00 Increases speed 1 (standard), 01 Increases speed 2 (high static pressure), 02 Standard speed (low static pressure).
- (3) 00 standard (7-step operation); 01 draft prevention (cannot be set below two steps); 02 High ceilings (cannot be set above two steps).
- (4) In case that the set temperature is changed and kept within the set time at "F4", the temperature is automatically changed to "F5" and "F6". In case that the set temperature is out of range at "F5" and "F6", it is applied within upper and lower limit for the set temperature.
- (5) Operation is stopped by pressing the run/stop switch for 3 seconds.
- (6) When the unit is restarted by the remote control switch, the temperature automatically changes to the setting temperature of "F5" or "F6".

- Makes the changes to the optional settings at least three minutes following start-up.
- On modifying the "CF" (air outlet louver angle change) setting, restore the power supply or allow the automatic louver to make a full cycle in automatic mode to apply the optional setting.
- The optional function settings are different depending on the indoor or outdoor units. Check that the unit has the optional setting.
- Save the optional settings made on each outdoor and indoor unit in the "Setting" column of the table.

6.2.2 Description of the optional remote control functions (PC-ARFPE)

b / - Removal of heating temperature compensation

This function is useful when the thermistor is removed from the suction area of the indoor unit and installed somewhere else. It is used when the temperature setting displayed on the remote control and the inlet air temperature of the indoor unit must be the same.

$b\vec{c}$ – Circulator function at heating Thermo-OFF

This function is useful when the air in the room is stratified (hot air accumulates at the ceiling). Air stratification may occur if LOW has been selected with the heating thermostat off. This function prevents air stratification in the room after stopping the air conditioning system.

The circulation pump function maintains the fan speed, whether the thermostat is on or off. Hence, the air movement in the room is kept at the same level to ensure even air distribution.

- If the indoor unit has an automatic louver, this function also remains active when the heating thermostat is switched off.
- Everyone has a different perception of coolness, heat and air flow and, therefore, this issue should be discussed with the client and the unit set according to the results of the conversation.

$b\beta$ – Forced compressor operation for at least three minutes

This function is used to protect the compressor preventing it from being started or stopped for periods of less than three minutes. On enabling this function, the mode enabling operations for a minimum of 3 minutes is added.

- In the case of SET-FREE units, this function is standard, even when the setting is not available.
- The compressor stops immediately when the safety device is activated or ON/OFF is pressed.
- To cancel this function, see C7 Cancellation of the forced compressor operation for at least three minutes.
- When this function is cancelled, the mode enabling operations for a minimum of 3 minutes remains available.

b ¹√ - Pre-determined filter cleaning period change

This function is used to modify the period which the remote control indicates the air filter replacement. The filter cleaning period can be changed depending on the condition of the filter.

The remaining number of hours before cleaning the filter is factory-set for all indoor unit models.

(*) for RPK units, the factory setting is 200 hours.

5 – Fixing of operation mode

This function is used when the operating mode does not have to be changed. Once the unit operating mode has been selected, this function prevents it from being modified from the remote control.

b5 – Fixing of setting temperature

This function is used when the temperature setting does not have to be changed. Once the unit temperature has been selected, this function prevents it from being modified from the remote control.

b⁷ − Fixing of cooling operation

This function is available to use refrigeration mode only and to prevent heating mode from being enabled. When this function is selected, heating operation and the automatic COOL/HEAT operation are cancelled.

bB – Automatic COOL/HEAT operation

This function allows the automatic change from the cooling to the heating mode for the units with the same refrigerant cycle.

This function is not valid when the outdoor unit is an exclusive cooling model or when the function to set operations as an exclusive cooling unit is enabled.

₽ - Fixing of fan speed

Once the unit fan speed has been selected, this function prevents it from being modified from the remote control.

When this function is enabled, the fan speed cannot be changed using the remote control.

₽8 - Not available

bb - Cooling temperature compensation

This function is used to obtain longer cooling periods. When this function is enabled, the air conditioning system is switched on/off with the temperature condition below the temperature indicated on the remote control.

The lower set temperature limit after offset is 19°C.

b□ – Not available

bd - Not available

bE - Not available

√ / – Not available

[☑ - Not available

∠ ∃ – Not available

도닉 – Drain pump in heating mode

This function is used to activate the drain pump in heating mode.

[5 - Increasing speed

The fan speed increase selection function is only available for RCI(M) and RCD units. It is used to increase the indoor units fan speed installed in high ceilings.

In the case of RPI units, this setting is used to select the static pressure from remote control.

$\mathcal{L}\mathcal{B}$ – Increasing fan speed

The fan speed increase selection function is only available for RCD units. This function is used to increase the fan speed when the thermostat reaches the set temperature in heating with function.

The fan speed does not increase when the thermostat is switched off with the function setting (C5).

$\mathcal{L}^{r_{i}}$ – Cancellation of the forced compressor operation for at least three minutes

This function is used when b3 - forced compressor operation for at least 3 minutes must be cancelled.

In the case of SET-FREE units, the forced compressor operation for at least 3 minutes described (b3) is the standard function.

\mathcal{LB} – Thermistor of remote control switch

This function is useful when the unit is to be controlled by the thermistor included in the remote control instead of by the suction air thermistor. It determines the thermistor to control the air temperature.

When the function is set to "01" or "02", if the temperature detected by the remote control thermistor is abnormal due to a fault in the remote control thermistor or another fault, the intake air thermistor on the indoor unit is used automatically.

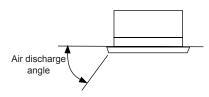
√ ¬ Not available

∠
∃
− Not available

∠b – Selection of forced stoppage logic

This function determines the operating logic for the forced stoppage contacts.

The setting conditions and contact logic are shown in the following table:


Setting condition							
Cotting	Sottime Contact		Activation contact				
Setting	Contact	Contact logic	Open	Closed			
00	Contact A	Normally open	Normal	Forced stoppage			
01	Contact B	Normally closed	Forced stoppage	Normal			

∠d – Not available

ΣΕ – Not available

LF - Change of louver swing angle

This function is useful when the louver swing angle (air discharge angle) must be changed.

Setting condition	Louver swing angle
00	Approx. 30 to 60°
01	Approx. 30 to 50°
02	Approx. 40 to 60°

d 1 − Power supply ON/OFF 1

This function stores the unit settings in the event of a power cut. The unit is restarted when the power is re-established.

When this function is used without anyone controlling the unit, set the system monitoring mode to avoid risks.

In the event of an electrical fault, the unit starts and stops according to the on/off setting of the power supply. If the fault occurs during a stoppage enabled through the remote control, the unit will restart automatically once the power supply is reconnected.

ಶ∠ – Not available

d 3 - Power supply ON/OFF 2

This function is used to restart the unit after a power cut taking more than 2 seconds. The standard unit starts automatically under the same operating conditions, such as the operating mode, etc. in the case of an electrical fault lasting for a maximum of 2 seconds.

The compressor unit restarts after three minutes plus the maximum 2 seconds of the fault.

When this function is used without anyone controlling the unit, set the system monitoring mode to avoid risks.

dЧ – Cooling air temperature drop prevention

This function is useful when the thermostat on/off conditions must be changed and a decrease in discharge air temperature must be avoided. As a result, the perception of draughts is prevented.

- Thermostat off conditions (thermostat switched OFF when the discharge air temperature is low):
 - Cooling operation (including dry operation).
 - Indoor air discharge temperature <11°C maintained for 3 minutes.
- Thermostat on conditions (thermostat switched ON when the discharge air temperature is low):
 - Indoor discharge air temperature >13°C.
 - The thermostat will switch on depending on the indoor discharge air temperature.

d5 - Heating air temperature drop prevention

This function prevents a drop in the air temperature by decreasing the fan speed, apart from the settings on the remote control.

d5 - Room temperature control for energy saving

This function is useful when energy must be saved automatically. The outdoor air temperature thermistor detects that the air conditioning charge is low, in line with the outdoor temperature.

d[□] - Only for Econofresh kit

This function is used to set the fresh outdoor air damper minimum opening selection.

E ← KPI ventilation mode

This function is used to set the unit ventilation mode with energy / heat recovery

This function is useful to set the heat exchanger ventilation mode. The setting condition and ventilation mode are shown below:

	Setting condition					
Setting Contents						
00	Effective ventilation mode selection (ventilation with total heat exchanger or ventilation bypass) to save energy by detecting the difference in temperature between indoors and outdoors.					
01	Heat is exchanged continuously when the heat exchanger is started.					
02	Heat is not continuously exchanged when the heat exchanger is started.					

$E \leftarrow$ - Econofresh cooling mode

This function allows to the outdoor air damper to be opened.

EZ – KPI Increasing air supply volume

This function is useful when the air supply volume must be increased using the high-speed, one-way valve on the fan motor during total heat exchanger operations. This increases the pressure in the room with greatest air volume in relation to adjoining rooms and prevents the entry of contaminated air or unpleasant smells.

E ≥ - Econofresh enthalpy sensor

This function selects the enthalpy sensor input.

E∃ – Not available

EЧ - Pre-cooling / pre-heating period

This function is useful to delay start-up of the total heat exchanger.

£5 - Not available

$\mathcal{E}\mathcal{S}$ – Indoor fan operation time after cooling operation stoppage

This functions prevents the condensation accumulation in the unit by keeping the fan running after it is switched off.

E7 - Not available

$\mathcal{E}B$ – Fan operation control at heating Thermo-OFF

This function is useful to avoid the perception of cold draughts by reducing the indoor fan speed with the heating thermo

ق − Not available

ER – Not available

$\mathcal{E}b$ – Fan operation control at cooling Thermo-OFF

This function reduces the unit fan speed to reduce the spreading of smells and humidity.

$\mathcal{E}\mathcal{I}$ – Forced Thermo-ON stoppage at cooling

This function is used to force stoppage when cooling is complete. It is effective for avoiding unpleasant smells, as the heat exchanger remains clean, e.g. it is rinsed with drainage water.

E d − Not available

EE – Automatic fan speed control

This function is useful to economise the operating time and limit the unit operation by automatically controlling the fan speed when the room temperature is close to the set temperature.

EF – Automatic fan speed control - (Corresponding to Hi2)

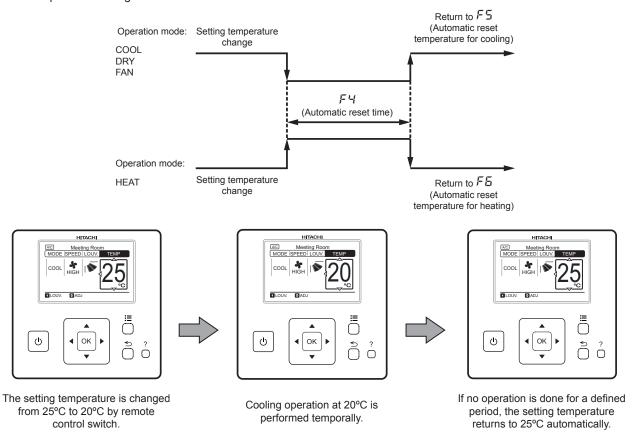
This function is used to increase the maximum fan speed to "High2" condition when the max speed remains on "high" by the EE function

F 1 - Automatic OFF timer setting

This function is used to switch off the timer automatically when the unit is started using the remote control.

It is not possible to cancel or change the timer off setting during automatic timer off setting. However, it can be cancelled when the unit is stopped. When the unit is restarted, the off timer setting period is established according to the optional setting. Do not set the functions "0C"-"0F" when two remote control switches are used in the same remote control group.

This function is not available for control using CS-NET or 7-day timer.


Fご – Remote control main-sub setting

This function is useful when configuring two remote controls for the same installation: one in main mode and the other in secondary mode.

F3 – Automatic reset of setting temperature

This function is used to economize the operation. When this function is activated, in the case that the set temperature has not been changed for the time period configured by FY (Automatic reset time), the set temperature automatically returns to F5 (Automatic reset temperature for Cooling) or F5 (Automatic reset temperature for heating).

However, the temperature configuration does not perform the automatic Reset when operating in Automatic COOL/HEAT mode or operations using the remote control for the central unit are forbidden.

두닉 – Automatic reset time

This function is used to set the automatic reset time with the temperature setting.

Setting condition	Automatic reset time of setting temperature
00	30 minutes (Factory setting)
01	15 minutes
02	60 minutes
03	90 minutes

F5 - Automatic reset temperature for cooling

This function is used to set automatic temperature reset in FAN/COOL/DRY modes.

Setting condition	Setting temperature for automatic reset
19	19°C
20	20°C
i i	:
25	25°C (Factory setting)
:	:
29	29°C
30	30°C

F5 – Automatic reset temperature for heating

This function is used to set automatic temperature reset in HEAT mode.

Setting condition	Setting temperature for automatic reset
17	17°C
18	18°C
:	:
21	21°C (Factory setting)
:	:
29	29°C
30	30°C

FR – Operation stoppage prevention by remote control switch operational error

Operation is stopped by pressing the run/stop switch for 3 seconds.

FB – Lock function for operation mode selection

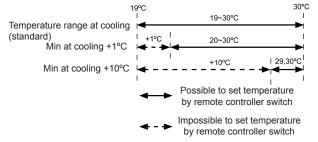
This function is used to prevent changes to the operating mode.

F9 - Lock function for temperature setting

This function is used to prevent changes to the temperature setting.

FR – Lock function for fan speed selection

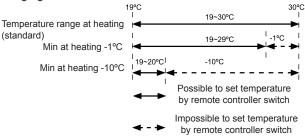
This function is used to prevent changes to the fan speed.


Fb – Lock function for swing louver operation

This function is used to prevent changes to automatic louver operations.

FL – Cooling lower limit for setting temperature

This function is useful to set the temperature range in cooling mode. It enables the cooling range to be reduced for configuration using the remote control.


An example is shown in the following figure:

Fd – Heating upper limit for setting temperature

This function is used to define an upper temperature setting limit for the HEAT function. This function enables the heating range to be reduced for configuration using the remote control.

An example is shown in the following figure:

FE - Not available

FF - Lock function for timer

This function is used to lock timer activation.

H 1 - Maintenance alarms

This function is used to display or hide maintenance alarms.

H₹ - Automatic control indication

This function is used to display or hide the automatic control indication.

H∃ - Operation mode change restriction

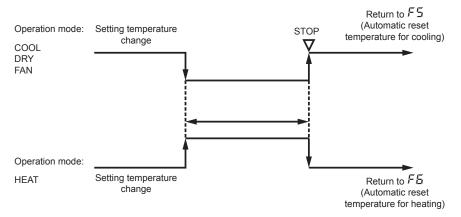
This function is used to configure restrictions to the HEAT mode.

HH – Operation modes for the ventilation unit with energy recovery

This function is only available for the ventilation unit with energy / heat recovery.

J∃ – Run indicator color

This function is used to set the run indicator colour.


Setting conditions	Colour
00	Green
01	Red

⊿₿ – Eco-operation

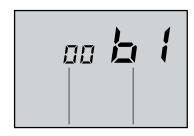
This function is used to optimize the setting of temperature and provide energy saving.

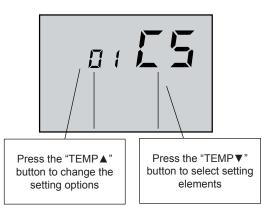
When the setting temperature is changed during the air conditioning operation and while the operation is started/stopped by RUN/STOP on the remote control switch, the set temperature automatically returns to "Automatic Reset Temperature for Cooling/Heating (F5/F6)" (as shown in the next illustration).

However, the setting temperature is not automatically reset in the case that "Automatic COOL/HEAT Operation" mode, or "Prohibiting Operation by Remote Control Switch" is set by the centralized controller.

F5 – Motion sensor detection level

This function is used to determine the amount of human activity depending on the reaction rate.

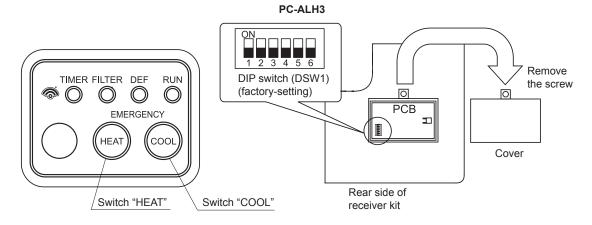

When "High" is set, the detection level becomes more sensitive. When "Low" is set the sensor becomes lower.

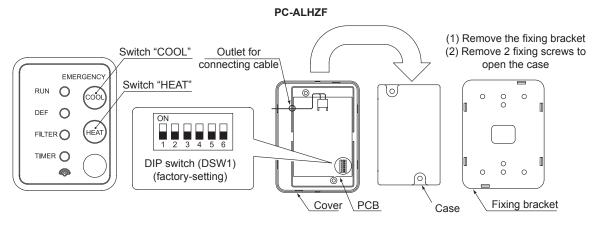

	Setting conditions						
	00 (factory setting)	01	02				
Human activity	Standard	High sensitive	Low sensitive				
Large	30% ≤ Reaction rate	20% ≤ Reaction rate	40% ≤ Reaction rate				
Small	3% < Reaction rate < 30%	3% < Reaction rate < 20%	3% < Reaction rate < 40%				
Not available	Reaction rate ≤ 3%	Reaction rate ≤ 3%	Reaction rate ≤ 3%				

6.2.3 Optional functions for PC-ARH remote controls

Optional setting function

- 1 To access the optional setting mode with the unit at a standstill, press the MODE and FAN SPEED buttons at the same time for over 3 seconds until the image displayed on the screen changes:
- 2 Press TEMP▼ to change the setting elements and press TEMP▲ to change the setting options. See the table below for the setting elements and options.
- 3 To complete the optional setting mode, press the MODE and FAN SPEED buttons at the same time.


Code	Part	Setting options
		00: Normal (temperature setting +4°C)
ы	Heating temperature setting cancellation	01: Cancelled (temperature setting)
	Caricolation	02: Temperature setting +2°C *(1)
	Simultaneous cooling/ heating	00: Disabled
ь8	mode	01: Enabled
		00: Disabled
£5	Increase of indoor fan	01: High 1
		02: High 2
		00: Disabled
C8	Remote control thermostat (*2)	01: Change from indoor inlet thermistor to remote control thermostat
20	remote donati mermodat (2)	02: Unit control using the average value of the indoor inlet thermistor and the remote control thermostat
F2	Main and secondary remote	00: Main
7.5	control setting	01: Secondary
FE	Minimum cooling temperature	00: Normal temperature range
FL	setting (*3)	01-10: Maximum heating limit +1°C - +10°C
Fd	Maximum heating temperature	00: Normal temperature range
	setting (*4)	01-10: Maximum heating limit -1°C - 10°C
н	Maintenance alarm	00: Display
	ivialitieriance alaitii	01: Hide
H2	Non-automatic control indication	00: Display
7112	Non-automatic control indication	01: Hide
		00: Operating mode change disabled (hide operating mode) (factory setting)
H3	Operating mode change restriction (*5)	01: Operating mode set by the central control unit + FAN mode
	(2)	02: Unlimited operation
	Vantilation ovelopes	00: Air conditioning only
HY	Ventilation exchange (total heat exchanger only)	01: Ventilation only
	(total float oxonaligor offly)	02: Air conditioning + Ventilation
H5	Central control available after forced stoppage	00: Disabled
,,,		01: Enabled


- *(1): Some indoor units do not accept setting 02.
- *(2): If installed next to a bedside table, use setting 00.
- *(3): Applicable to FAN, COOL and DRY modes.
- *(4): Applicable to HEAT mode.
- *(5): Setting 01 is only available when a remote control is used. Do not use this setting when two controls (main/secondary) are used.

i NOTE

- · When several indoor units are connected, the same settings apply to them all.
- To change the settings, wait for over 3 minutes after switching on the power supply.
- Some indoor and outdoor units do not accept certain settings or do not include functions corresponding to the enabled settings. Check the available settings beforehand.

6.2.4 Settings on wireless remote controls

Secondary receiver setting

To enable this setting, enable terminal 1 on the DIP switch.

TIMER FILTER DEF RUN Switch "HEAT" Switch "COOL" Rear side of receiver kit Cover

6.3 Complementary systems

6.3.1 KPI and DX-Interface

Optional functions

The following optional functions as shown in next table are available by setting of PC-ARFPE. Contact your distributor or dealer of HITACHI for the detailed information.

Where	Code	Function	DX	KPI-E4E	KPI-X4E	Setting Status	Remarks
	b3	Compressor 3 min off guard	0	-	0	00: Invalid 01: Valid	
	b4	Filter sign	0	0	0	00: Indoor setting 01: 100h 02: 1200h 03: 2500h 04: no indication	
	b5	Run mode fix	0	-	0	00: Normal 01: Fix	
	b6	Setting temperature fix	0	0	0	00: Normal 01: Fix	
	b7	Cooling only fix	0	-	0	00: Normal 01: Fix	
	b8	Auto Cool/Heat	0	-	0	00: Invalid 01: Valid	
	b9	Air flow fix (Fixed air fan speed)	0	-	0	00: Normal 01: Fix	
	C1	Electrical heater signal	-	0	0	00: Disabled 01: Enabled	
	СЗ	Fan stoppage delay	0	0	0	00: Disabled (Default) 01: 60 minutes	
	C5	Static pressure selection	-	0	0	00: Standard 01: High pressure 02: Low pressure	
	C6	Fan speed up when heating thermo OFF	0	-	-	00: Invalid 01: Valid	
RCS	C7	CO2 sensor enabled	-	0	0	00: Disabled (Default) 01: Enabled	
setting	C8	Thermistor selection	0	-	-	00: Inlet 01: Remote controller 02: inlet+Remote controller/2	
	Cb	Forced stop logic selection	0	0	0	00: A contact 01: B contact	
	СС	High ventilation speed	0	0	0	00: Disabled 01: Enabled	
	d1	Power ON/OFF 1	0	0	0	00: Invalid 01: Valid	
	d3	Power ON/OFF 2	0	0	0	00: Invalid 01: Valid	
	E1	Ventilation mode	-	0	-	00: Automatic ventilation 01: Heat exchanger ventilation 02: Bypass ventilation	Bypass not available for KPI-Active
	LI	"A" offset for Thermo OFF in control by Outlet for DX-Kit	0	-	-	00: 0 01: 2 02: 4	
	E2	Air Volume increasing	-	0	0	00: Not activated 01: Activated	This function is used to make higher the room pressure than the surrounded rooms. One of the fans increases its speed while the other runs according to the remote controller. Hi/Me/Lo> Hi/Hi/Me
	E3	E2 Fan mode selection	-	0	0	00: Activated for supply fan 01: Activated for exhaust fan	

Where	Code	Function	DX	KPI-E4E	KPI-X4E	Setting Status	Remarks
RCS setting	E4	Precooling / Preheating period	-	0	0	00: 0 minutes 01: 30 minutes 02: 60 minutes	The unit starting is delayed a certain time while A/C system starts working.
	E5	High ventilation after switch ON	0	0	0	00: 0 minutes 01: 60 minutes	
PCB1 & RCS	i1	CN3 1#-2# input (*1)(*2)	0	0	0	00:No setting 01:Room Thermo (Cooling) 02:Room Thermo (Heat) 03:Remote ON/OFF 1 (Contact)	When Thermo ON/OFF input enabled (PCB2-DSW16=ON), i1 optional signal is not available
	i2	CN3 2#-3# input	0	0	0	04: Remote ON/OFF 2 (Pulse) 05:Remote ON/OFF2 (Stoppage/ Pulse) 06:Forced Stop 07: Remote H/C changeover	
	01	CN7 1#-2# output	0	0	0	00:No setting	
	02	CN7 1#-3# output	0	0	0	01:Run	
	о3	CN8 1#-2# output	0	0	0	02:Alarm 03:Cooling 04:Thermo ON 05:Heating 06:Defrost	
PCB1 (PSW)	Ct	CO2 sensor type	0	0	0	00: ON/OFF CO2 signal 01: Activated 4-20mA signal 02: Activated 0-10V signal	
		S1: Set minimum	0	0	0	Default (00: 4 / 01: 0) Range (00:4~S2 / 01: 0~S2)	
		S2: Set maximum	0	0	0	Default (00: 20 / 01: 10) Range (00: S1~20 / 01: S1~10)	
	dF	Defrost Fan	0	-	0	00: Fan Low operation (Default) 01: Fan kept operation 02: Fan stopped operation	

- (*1): CO2 sensor signal must be an ON/OFF signal. CO2 sensor must be connected to CN3, pins 1-2, for i1 input signal (refer to outdoor unit technical catalogue for further information about the connection specs).
- (*2): When using this option i1 standard functions become deactivated i2 input signal is not affected.

6.3.1.1 DX-Interface

Main optional functions on DX-Interface series 2

Optional function	Explanation
EC Fan or Tap Fan	The control of tap fans and EC fans is possible from the DX-Interface series 2.
Defrost signal	Output signal get from the DX-Kit when the system is in defrost mode.
Fan operation during defrost	During defrost operation three different fan speed settings are possible: fan speed kept as set, fan speed reduced to low speed and fan stoppage.
Thermo-on / thermo-off by an external input	Instead of typical control logic.
Operation delay	Once the system is turned on, the unit is kept in off during an specific time. Useful for applications where the DX-Kit is focused in comfort and not room conditioning
Thermistor selection	Option to select between inlet thermistor, external thermistor or remote controller thermistor to perform the cycle control (as inlet temperature) (Only if demand control is based on inlet temperature).
Fan Stoppage delay	Once the system is switched off, the unit keeps running for a suitable period of time, to for example, perform the air renovation once the activity is conclude.
CO2 sensor	By the action of an ON/OFF CO2 sensor, the DX-Kit switches the fan speed to high while the CO2 concentration exceeds the sensor detection threshold.

DX-Interface series 2 - Input / Output signals

Input signal	Available from DX-Interface series 2
1	Control using the field-supplied room thermostat (cooling).
2	Control using the field-supplied room thermostat (heating).
3	Function 1 - remote ON/OFF of the unit (by contact).
4	Function 2 - turns unit ON.(by pulse).
5	Function 2 - turns unit OFF.(by pulse).
6	Cancellation of commands from remote control switch after forced stoppage.
7	Setting of the cooling mode or the heating mode.

Output signal	Available from DX-Interface series 2
1	Operation signal.
2	Alarm signal.
3	Cooling signal.
4	Thermo-ON signal.
5	Heating signal.
6	Defrost signal.

Input signal	Available from Outdoor unit					
1	Control using the field-supplied room thermostat (cooling).					
2	ontrol using the field-supplied room thermostat (heating).					
3	unction 1 – remote ON/OFF of the unit (by contact).					
4	Function2 - turns unit ON (by pulse).					
5	Function2 - turns unit OFF (by pulse).					
6	Cancellation of commands from remote control switch after forced stoppage.					
7	Setting of the cooling mode or the heating mode.					

Output signal	Available from Outdoor unit
1	Operation signal.
2	Alarm signal.
3	Cooling signal.
4	Thermo-ON signal.
5	Heating signal.
6	Defrost signal.

Thermo - On / Off control option

With DX-Interface series 2 it is possible to perform the thermo-On/thermo-Off control by three different ways.

Standard thermo-On / thermo-Off control (Default setting).

Suitable for installations controlled by suction or discharge temperature.

The thermo-On / thermo-Off logic is decided based on the difference between the inlet temperature to the coil and the set temperature on the remote controller or central controller.

By an external input.

The thermo-On / thermo-Off control can be driven externally by an input signal connected to the CN3 socket of the PCB1 of the DX-Kit.

Setting NOTE: DIP Switch 1 - Pin 6 of DX-Kit PCB2 (small PCB) must be switched on (PCB2-DSW1#6 switched

Once the PCB DSW has been set, the input "i1" of CN3 is automatically set for thermo-On / thermo-Off control. The setting of input "i2" is kept as set on the remote controller.

Please refer to HITACHI Indoor Units Service Manual for further information about the setting and connection of the auxiliary inputs to CN3 socket.

· By the duty signal.

For systems controlled by a duty signal it is possible to force the thermo-Off by the duty signal itself. When the duty signal becomes the minimum of its range (0 V or 4 mA) the system will be switched to thermo-Off condition. To be switched to thermo-On condition the duty must become higher than the 8% of its range.

Setting note: No additional setting is required once the demand control setting has been set as Duty control.

Туре	Description
Standard thermo-On / thermo-Off control (Default setting)	Suitable for installations controlled by suction or discharge temperature. The thermo-ON / thermo-OFF logic is decided based on the difference between the inlet temperature to the coil and the set temperature on the remote controller or central controller.
By an external input	The thermo-On / thermo-Off control can be driven externally by an input signal connected to the CN3 socket of the PCB1 of the DX-Kit. Setting note: DIP Switch 1 – Pin 6 of DX-Kit PCB2 (small PCB) must be switched on (PCB2- DSW1#6 switched ON). Once the PCB DSW has been set, the input "i1" of CN3 is automatically set for thermo-On / thermo-Off control. The setting of input "i2" is kept as set on the remote controller. Please refer to HITACHI Indoor Units Service Manual for further information about the setting and connection of the auxiliary inputs to CN3 socket.
By the duty signal	For systems controlled by a duty signal it is possible to force the thermo-OFF by the duty signal itself. When the duty signal becomes the minimum of its range (0V or 4mA) the system will be switched to thermo-OFF condition. To be switched to thermo-ON condition the duty must become higher than the 8% of its range. Setting note: No additional setting is required once the demand control setting has been set as Duty control.

6.3.2 Econofresh Kit

♦ Available ports

The system has three optional input signals programmed into the PCB using connector CN3 on the RPI unit and using the remote control. Connector CN3 has two ports for configuring the optional input signals of the Econofresh kit.

The outdoor cooling function E1 requires no CN3 connector setting.

When the RPI unit DSW6 is set for use of the Econofresh kit, CN3 connectors 1 and 2 are locked on the RPI unit PCB.

Description of optional input signals

Enthalpy sensor

On-screen display: *E* ≥ .

The signal opens and closes the air inlet valves and the outlet damper, mixing the outdoor air and the return air of the Econofresh kit. This function is based on the air quality parameters that provide precise control of the air quality.

Connect the cables as indicated in point "6.1.1 Available ports". Only CN3 contacts 1 and 2 can be connected.

The signal has the following control logic:

Connector	Contact number	X1	Damper valve
CN3	1.0	ON	_
CNS	Ι, Ζ	OFF	Enabled

CO₂ sensor

On-screen display: 돈님.

This signal controls the inlet of outdoor air according to the concentration of ${\rm CO_2}$ inside the room.

Connect the cables as indicated in point "6.1.1 Available ports". Only CN3 contacts 1 and 2 can be connected.

The signal has the following control logic:

Connector	Contact number	X1	Damper valve
CNS	1.2	ON	_
CN3	1, 2	OFF	Enabled

Compatibilities between optional signals

The following table shows the compatibility between the different optional signals:

	PC-ARPFE optional functions	Room thermostat	Remote control thermistor	Remote thermistor	Wireless remote control	Outdoor cooling mode	Enthalpy sensor	CO ₂ sensor
Room thermostat	-	-	-	-	-	_	-	-
Remote control thermistor	E8	_	_	-	-	0	0	0
Remote thermistor	_	_	_	-	-	-	-	-
Wireless remote control	_	_	_	-	-	0	0	0
Outdoor cooling mode	Εſ	_	0	-	0	-	-	-
Enthalpy sensor	E2	_	0	_	0	_	_	_
CO ₂ sensor	EΥ	_	0	_	0	_	_	_

Not available: -Available: O

7. Commissioning

Index

7.1	Checks prior to the test run	234
	7.1.1 Check points	234
	7.1.2 Check procedure	234
	7.1.3 PC-ARFPE remote control	235
7.2	Test procedure using the wireless remote control	237
	7.2.1 PC-AWR wireless remote control	237
7.3	Test run check list	238

7.1 Checks prior to the test run

- Once installation is complete, carry out the test run in line with the procedure described below. The system can be handed over to the client once the test has been correctly completed.
- Prior instructions to carry out the test run:
- 1 Verify the check points described in Check points.
- 2 Carry out the check procedure described in Check procedure.
- 3 Carry out the test run on the indoor units individually and in order.
- 4 Check that the wiring and refrigerant piping connections are connect.
- 5 Start the indoor units individually and in order. Check that they are correctly numbered.
- 6 Carry out the test in line with the instructions given in section Test procedure using the remote control.

- Bear the following in mind while the system is running:
 - Do not touch any component in the discharge gas area. The compressor chamber and the piping are at temperatures of over 90°C. They may cause burns.
- Do not touch the magnetic breakers. This could cause a serious accident.
- · Wait for more than three minutes before touching electrical components after turning off the main switch.
- Check that the gas and liquid line stop valves are fully open.

7.1.1 Check points

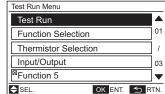
- · Do not start the system until all of the check points have been verified.
- 1 Use a multimeter to measure the resistance between earth and the electrical component terminal. Check that the resistance is above 1 $M\Omega$. Otherwise, do not start the system, locate the electrical leak and repair. Do not apply voltage to transmission terminals 1 and 2.
- 2 Check that the outdoor unit stop valves are fully open. If so, start the system.
- 3 Check that the power supply switch has been on for over 12 hours to heat up the compressor oil.

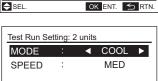
7.1.2 Check procedure

Check:

- 1 The gas and liquid line stop valves are fully open.
- 2 That there are no refrigerant leaks.

Flare nuts may sometimes loosen due to vibrations during transportation.


- 3 Refrigerant piping and wiring form part of the same system.
- 4 The number of the DSW1, DSW6 and RSW1 units corresponds to the system.
- 5 The setting of the DIP switches on the printed circuit board of the indoor units is correct. Pay particular attention to the set different in height between the indoor and outdoor units. See the wiring diagrams for further details.
- 6 The power supply switch has been on for over 12 hours to heat up the compressor oil.
- 7 The wiring is correctly connected. See the wiring diagrams for further details.
- 8 Each terminal (L1, L2, L3, N or L1 and N) is correctly connected to the power supply.
- 9 The field-supplied electric components (main power switch protection fuse, circuit breaker without fuse, residual current breaker, wires, piping connectors and wire terminals) have been selected correctly in line with the electrical data given in the technical catalogue and in national and local regulations.
- 10 The power supply wiring terminal connection (L1 to L1 and N to N). Check the connection of the terminal boards running at 380 Vac. An incorrect connection may damage components.
- 11 Intermediate wire terminals between the indoor unit (operational line: terminals of every terminal board for 12 V) fit correctly. An incorrect connection may damage components.
- 12 The crankcase checker has been on for more than four hours. The device will not work unless it has been on for more than four hours.

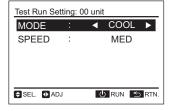

- 13 The operating temperature:
- Cooling operation
 - a. Indoor DB 21.5 °C and higher.
 - b. Indoor WB 16 °C and higher.
 - c. Outdoor DB 0 °C and higher.
- Heating operation
 - a. Indoor DB27 °C and below.
- 14 Use shielded cables for the installation to avoid electrical noise. This must be less than 1000 m in length and meet with national and local regulations.
- 15 Disconnect the KPI unit if it is connected to the indoor unit control. Otherwise the unit will not carry out the test run.

7.1.3 PC-ARFPE remote control

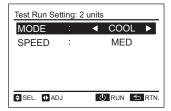
- (1) Turn ON the power supply for all the indoor units.
- (2) For the models with the auto-address function, wait for 3 minutes approximately. The addressing is automatically performed. (There is a case that 5 minutes is required according to the setting condition.) After that, select using language from "Menu". Refer to the operation manual for details.
- (3) Press and hold "\(\exists \)" (menu) and "\(\exists \)" (return) simultaneously for at least 3 seconds.

Test run screen

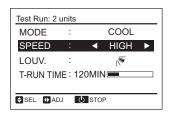
U RUN ≤ RTN


SEL. ADJ

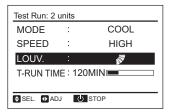
a. The test run menu will be displayed.


b. Select "Test Run" and press "OK". The test run settings will be displayed.

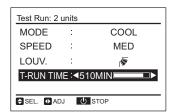
When "00" is indicated, the auto-address function may be performing. Cancel "Test Run" mode and set it again.



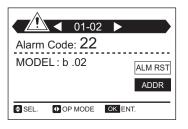
(4) The total number of the indoor units connected is indicated on the LCD (liquid crystal display). The case of the twin combination (one (1) set with two (2) indoor units) is indicated "2 units", and the triple combination (one (1) set with three (3) indoor units) is indicated "3 units".



- a. If the indicated number is not equal to the actual connected number of indoor unit, the auto-address function is not performed correctly due to incorrect wiring, the electric noise or etc. Turn OFF the power supply and correct the wiring after checking the following points; (Do not repeat turning ON and OFF within 10 seconds.)
- Power supply for indoor unit is not turned ON or incorrect wiring.
- Incorrect connection of connecting cable between indoor u nits or incorrect connection of controller cable.
- Incorrect setting of rotary switch and dip switch (the setting is overlapped) on the indoor units PCB.


- b. Press "O" (run/stop) to start the test run.
- c. Press " $\triangle \nabla \triangleleft \triangleright$ " and set each item.
- (5) Press "U" (run/stop). Start the test run when indicating the air flow volume "HIGH" (default setting) and light the operation lamp. At this time, 2-hour OFF timer will be set automatically.

(6) Press " \triangle " or " ∇ ", select "LOUV." and select " \triangleright " (auto swing) by pressing " \triangleleft " or " \triangleright ". The auto swing operation will be started. Check the operating sound at the louvers. If abnormal sound is not generated, press " \triangleleft " or " \triangleright " again to stop the auto swing operation.


- (7) The temperature detections by the thermistors are invalid though the protection devices are valid during the test run.
- (8) For SET-FREE Series: According to the label "Checking of Outdoor Unit by 7-Segment Display on PCB1" attached to the rear side of the front cover of the outdoor unit, check temperature, pressure and the operation frequency, and connected indoor unit numbers by 7-segment displays.
- (9) To finish the test run, press " \circlearrowleft " (run/stop) again or pass over the set test run time. When changing the test run time, press " \circlearrowleft " or " \triangledown " to select "T-RUN TIME". Then, set the test run time (30 to 600 minutes) by pressing " \vartriangleleft " or " \triangleright "

The RUN indicator on the remote control switch flashes when some abnormalities such as protection devices activated occur during the test run as well as the RUN indicator (orange) on the indoor unit flashes (0.5 second ON/ 0.5 second OFF).

Additionally, the alarm code, the unit model code and connected number of indoor units will be displayed on the LCD as shown in the figure below. If the RUN indicator on PC-ARFPE flashes (2 seconds ON/ 2 seconds OFF), it may be a failure in the transmission between the indoor unit and the remote control switch (loosening of connector, disconnecting wiring or breaking wire, etc.). In this case, check the item *Alarm Code* and perform for troubleshooting.

Consult to authorized service engineers if abnormality can not be recovered.

7.2 Test procedure using the wireless remote control

7.2.1 PC-AWR wireless remote control

∕!\ CAUTION

Test running by the controller can not be performed in case that the wired remote control switch is used together; in case that multiple units are operated simultaneously (SET-FREE and UTOPIA series). In such cases, perform the test running by the wired remote control switch

- 1 Perform the test run after the installation work is completed.
 - a. Set the batteries for the controller.
 - b. Turn ON the power supply for the indoor and outdoor units.
 - c. "♠" lamp (yellow) on the receiver of the indoor unit flashes (0.25 seconds ON ←→ 0.25 seconds OFF), and then turns OFF. While the lamp is flashing, the unit will not operate because it is initializing.
- 2 Set the test run mode by pressing "LOUVER" and "ON TIMER" switch simultaneously for more than 3 seconds. The LCD should be as shown in the figure on the below.
- 3 Set the operation mode by pressing the "MODE" switch.

Test run mode is under suspension

Test run mode is under operating

- 4 Operate the test run by pointing the transmitter towards the receiver of the indoor unit and press the "U On" switch. When the commands are received by the indoor unit, the
 - "@" lamp (yellow) of the receiver will come on briefly. Check the commands are received well and the mode selected 3) is set correctly.

In the test run mode, the red lamp (RUN) of the receiver is turned ON and the green lamp (TIMER) flashes (0.5 seconds ON ←→ 0.5 seconds OFF) (*2). And then set off timer for 2 hours.

i \rfloor_{NOTE}

- In the case that the "\@" lamp (yellow) does not turn ON, the controls may not have reached the receiver. Send the commands again.
- (*2) In the case of RPK model, "TIMER" lamp is turned ON without flashing.
- 5 Adjust the angle of the air louver as follows.

Check the commands are received correctly using the lamp and buzzer of the receiver kit. Use the wireless remote controller pointing the transmitter toward the receiver.

CAUTION

The air louver has a mechanism for the auto-swing function. Do not move the louver by hand forcefully.

- a. Select the FAN mode by pressing the 'MODE' switch.
- b. Set the louver angle by pressing the 'LOUVER' switch. The louver direction is changed as follows. (For heating and fan operation).

LCD Indication

- 6 Stop the test run
 - a. Test run is stopped after 2 hours automatically.
 - b. Test run is stopped by pressing " Off" switch.

After Test Run is finished, check that the red lamp (RUN) and the green lamp (TIMER) are turned OFF.

			_	_	
72	Test	-			lict
/7	1621				

MODEL:	
SERIAL NUMBER	
COMPRESSOR MFG NO	
NAME AND ADDRESS OF CUSTOMER:	
DATE:	

- 1 Does the indoor unit fan turn in the correct direction? _____
- 2 Has the unit been running for at least twenty (20) minutes? _____
- 3 Check the temperature of the room:

Inlet:	Nº 1	DB/WB	°C	Nº 2	DB/WB	°C	Nº 3	DB/WB	°C	Nº 4	DB/WB	°C
Outlet:	IN I	DB/WB	°C	IN Z	DB/WB	°C	IN 3	DB/WB	°C	IN 4	DB/WB	°C
Inlet:	Nº 5	DB/WB	°C	Nº 6	DB/WB	°C	Nº 7	DB/WB	°C	Nº 8	DB/WB	°C
Outlet:	IN- S	DB/WB	°C	IN- O	DB/WB	°C	IN 7	DB/WB	°C	IN O	DB/WB	°C

4 Check the outside temperature:

Inlet	DB/WB°C
Outlet	DB/WB°C

5 Check the temperature of the refrigerant: Operating mode (cooling or heating).

Discharge gas temperature	Td =°C
Liquid pipe temperature	Te =°C

6 Check the pressure:

Discharge pressure	Pd =kg/cm ² G
Suction pressure	Ps = kg/cm ² G

7 Check the voltage:

Rated voltage	V	_	_
Service voltage	L1–L2V	L1–L3V	L2–L3V
Initial voltage	V	_	_
Phase imbalance	1-(V/Vm) =	_	_

8 Check the compressor inlet operating current

Inlet	kW
Suction pressure	kW

9	Is the	refrigerant	charge	OK?	

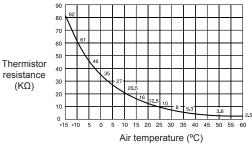
- 10 Do the operating control devices work properly? _____
- 11 Do the safety devices work correctly? _____
- 12 Has the unit been checked for refrigerant leaks?
- 13 Is the unit clean? _____
- 14 Are all the panels of the unit fastened securely?
- 15 Are the panels of the cabinet fastened so that they do not make any noise?
- 16 Is the filter clean? _____
- 17 Is the heat exchanger clean? _____
- 18 Are the stop valves open? _____
- 19 Does the water flow freely through the drainage pipe? _____

Electrical check of main parts

Index

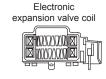
8.1	Thermistor	. 240
8.2	Electronic expansion valve	.240
8.3	Automatic louver mechanism	.241
	8.3.1 RCI indoor units	241
	8.3.2 RCIM indoor units	242
	8.3.3 RCD indoor units	243
	8.3.4 RPC-FSN3E indoor units	244

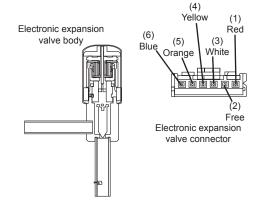
8.1 Thermistor


Check that the thermistors are connected to the PCB inlet and, if not, connect them.

Use a multimeter to check that the thermistor resistances are between 240 Ω and 840 k $\Omega.$ Otherwise, replace any defective thermistors.

This figure is applicable to the following thermistors.


1. Inlet Air Thermistor (THM1), 2. Liquid Pipe Thermistor (Freeze Protection) (THM3), 3. Gas Pipe Thermistor (THM5), 4. Outlet Air Thermistor (THM2)



Thermistor characteristics

8.2 Electronic expansion valve

- 1 Check that the voltage of the valve ranges between 12Vdc±1.2V.
- 2 Use a multimeter to check the coil resistance (per phase). This ranges between 100 $\Omega\pm10\%$ at an ambient temperature of 20°.
- 3 Check the number of pulses per second. This ranges between $100\Omega \pm 250$ pulses per second (the width between pulses is greater than 3 mm) on activating phase 2.
- 4 Check that the valve flow is reversible.
- 5 When the valve is fully open and in heating process, check that the temperature of the liquid in the piping increases. If not, this indicates a fault.
- 6 When the valve is slightly open or fully open, check that the temperature of the freeze protection thermistor is higher than the suction temperature. If not, this indicates a fault.

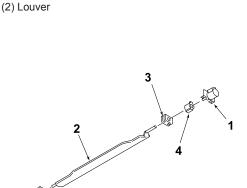
(1) Motor

8.3 Automatic louver mechanism

8.3.1 RCI indoor units

Stop the automatic louver:

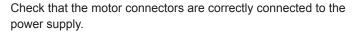
- 1 Press AUTO LOUVER on the remote control while the automatic louver is operating.
- 2 The AS-type stop (2) touches the end of the steel plate and the louver returns to position 0.
- 3 The motor (1) power supply switches off when the louver is at the set position.
- 4 The louver stops at the set position.


Remove the optional air panel.

Remove the automatic louver cover and motor.

Check for dust, dirt, damp and cracks on the parts.

Check the joints and meshing between the parts:

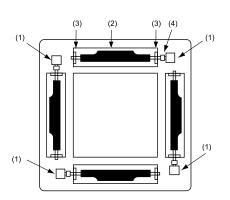

Number	Part name
1	Motor
2	Louver
3	Bushing
4	Stop

0 (zero) Reset

Steel plate stopper

(4) Motor

Check that the motor has a power supply of 12 V.


Start the panels.

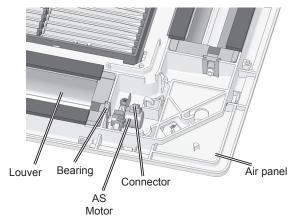
Press LOUVER to start the louver movement.

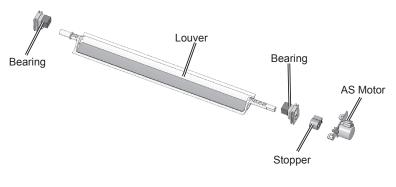
Check the meshing of the louver parts and that the louver movement is correct.

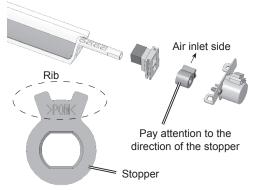
Fit the automatic louver cover and motor.

Fit the optional air panel.

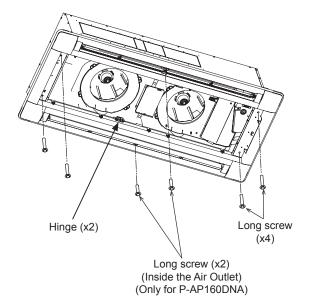

8.3.2 RCIM indoor units


Stop the automatic louver:


- 1 Press AUTO LOUVER on the remote control while the automatic louver is operating.
- 2 The crank touches the end of the motor securing plate and the louver returns to position 0.
- The motor power supply switches off when the louver is at the set position.
- 4 The louver stops at the set position.


Removing the auto louver motors and the louver:

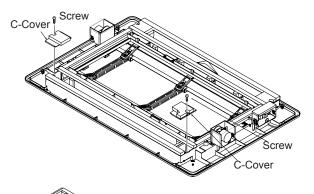
- 1 Remove the air panel:
 - a. Remove the auto swing motor connector (CN17) from PCB.
 - b. Remove the corner pocket covers.
- 2 Remove the fixing screw for C-cover and remove the C-cover.
- 3 Remove the fixing screw for AS Motor from the air panel. Then remove the louver, louver bearing and AS motor.
- 4 Remove the AS motor, stopper and bearing from the louver.
- 5 Disconnect the connector for the AS motor. Press the catch to disconnect the connector to avoid breakage.

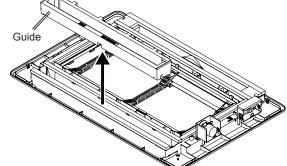

8.3.3 RCD indoor units

Stop the automatic louver:

- 1 Press AUTO LOUVER on the remote control while the automatic louver is operating.
- 2 The crank (2) touches the end of the motor securing plate (7) and the louver returns to position 0.
- 3 The motor (1) power supply switches off when the louver is at the set position.
- 4 The louver (6) stops at the set position.

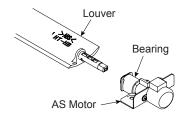
Remove the optional air panel:

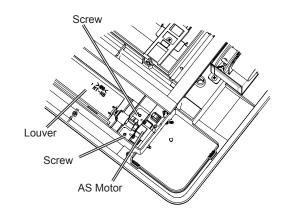

- a. Remove the auto louver motor connector (CN17) from PCB.
- b. Hang the air panel from the indoor unit by hooking the hinges and remove the long screws (4 for P-AP90DNA, 6 for P-AP160DNA) for air panel.
- c. Then remove the air panel by unhooking the hinges (x2) from the indoor unit drain pan.



Remove the automatic louver motors and louver.

Check for dust, dirt, damp and cracks on the parts.


1 Remove the fixing screw for C-cover and remove the C-cover.



2 Pull the guide upwards and remove it.

- 3 Disconnect the connector from the AS motor.
- 4 Remove two fixing screws for AS motor from the air panel. Then remove the louver and AS motor form the air panel.


5 Remove the louver from the bearing for AS motor.

8.3.4 RPC-FSN3E indoor units

Stop the automatic louver:

- 1 Press AUTO LOUVER on the remote control while the automatic louver is operating.
- 2 The gear (3) touches the end of the cover (6) and the louver returns to position 0.
- 3 The motor (1) power supply switches off when the louver is at the set position.
- The louver (6) stops at the set position.

Number	Part name
1	Motor
2	Pinion
3	Gear
4	Bushing
5	Cover
6	Louver

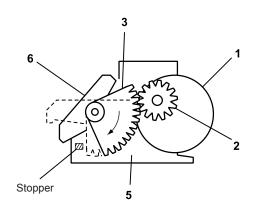
Remove the automatic louver cover and motor.

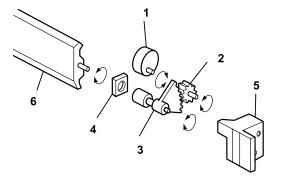
Check for dust, dirt, damp and cracks on the parts.

Check the meshing and the joints between the parts:

- 1 Motor shaft and pinion.
- Pinion and gear. 2
- 3 Gear and louver shaft.
- Bushings and louver.

Check that the motor has a power supply of 12v.


Start the panels.


Press LOUVER to start the louver movement.

Check the meshing of the louver parts and that the louver movement is correct.

Fit the automatic louver cover and motor.

Fit the optional air panel.

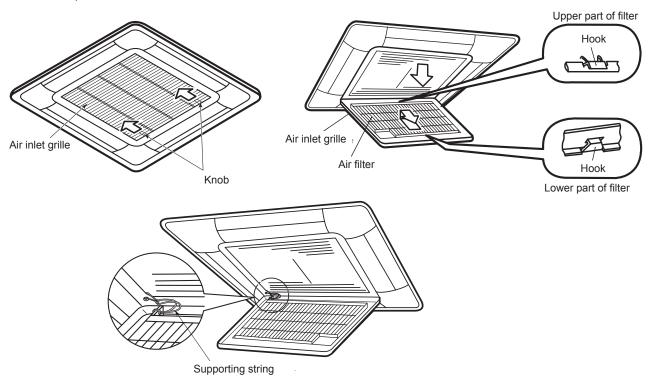
9. Servicing

Index

9.1	RCI-(1.0-6.0)FSN4 - 4-way cassette	248
	9.1.1 Removing Air Filter and Air Inlet Grille	248
	9.1.2 Removing Electrical Box Cover	248
	9.1.3 Removing Optional Air Panel	249
	9.1.4 Removing turbo fan and fan motor	250
	9.1.5 Removing Printed Circuit Board (PCB1)	251
	9.1.6 Removing Drain Pan	252
	9.1.7 Removing Antibacterial Agent	252
	9.1.8 Removing Drain-Up Mechanism	253
	9.1.9 Removing Float Switch	254
	9.1.10 Removing Thermistors for Liquid Pipe and Gas Pipe	255
	9.1.11 Removing Electronic Expansion Valve Coil	256
	9.1.12 Removing Auto Louver Motors	257
	9.1.13 Removing Louver	258
9.2	RCIM-(0.6-2.5)FSN4(E) - 4-way cassette (compact)	259
	9.2.1 Removal of the air filter	259
	9.2.2 Removal of the air inlet grille	259
	9.2.3 Removal of the electrical box cover	259
	9.2.4 Removal of the optional air panel	260
	9.2.5 Removal of the fan runner and the fan motor	261
	9.2.6 Removal of the printed circuit board (PCB)	262
	9.2.7 Removal of the drain pan	263
	9.2.8 Removal of the drain mechanism	264
	9.2.9 Removal of the float switch	264
	9.2.10 Removal of the thermistors from the liquid and gas pipes	265
	9.2.11 Removal of the electronic expansion valve coil	265
	9.2.12 Removal of the inlet air thermistor	266
	9.2.13 Removal of the automatic louver motor	267
9.3	RCD-(0.8-6.0)FSN3 - 2-way cassette	268
	9.3.1 Removal of the Air filter and the Air inlet grille	268
	9.3.2 Removal of the electrical box	268
	9.3.3 Removal of the optional air panel	269
	9.3.4 Removal of the fan duct and the fan	269
	9.3.5 Removal of the printed circuit board (PCB)	271
	9.3.6 Removal of the float switch	272
	9.3.7 Removal of the drain mechanism	272
	9.3.8 Removal of the drain pan	272
	9.3.9 Removal of the thermistors from the liquid and gas pipes	273
	9.3.10 Removal of the electronic expansion valve coil	274

	9.3.11 Removal of the automatic louver motor	274
	9.3.12 Remove the Anti bacterial agent case	275
9.4	RPC-(3.0-6.0)FSN3E - Ceiling type	276
	9.4.1 Removal of the air filter	276
	9.4.2 Removal of the side panel	276
	9.4.3 Removal of the air outlet grille	276
	9.4.4 Removal of the fan motor	277
	9.4.5 Removal of the fan shaft support	278
	9.4.6 Removal of the coupling	278
	9.4.7 Removal of the automatic louver motor	278
	9.4.8 Removal of the thermistors from the liquid and gas pipes	279
	9.4.9 Removal of the printed circuit board (PCB)	280
9.5	RPC-(1.5-6.0)FSN3 - Ceiling type	281
	9.5.1 Removing Air Filter and Air Inlet Grille	281
	9.5.2 Removing Side Cover	281
	9.5.3 Removing Louver	282
	9.5.4 Removal of the fan motor	282
	9.5.5 Removing Bearing (Except for RPC-1.5 and 2.0FSN3)	284
	9.5.6 Removing Coupling (Except for RPC-1.5 and 2.0FSN3)	285
	9.5.7 Removing Auto Louver Motor	286
	9.5.8 Removal of the thermistors from the liquid and gas pipes	286
	9.5.9 Removing Electronic Expansion Valve Coil	287
	9.5.10 Removal of the printed circuit board (PCB)	289
9.6	RPI-(0.6-6.0)FSN4E - Ducted indoor unit	290
	9.6.1 Removal of the electrical box	290
	9.6.2 Removal of the inlet and outlet air thermistors	291
	9.6.3 Removal of the thermistors from the liquid and gas pipes	292
	9.6.4 Removal of the fan parts	292
	9.6.5 Removal of the drain mechanism	293
	9.6.6 Removal of the float switch	294
	9.6.7 Removal of the air filter	294
9.7	RPI-(8.0-20.0)FSN3(P)E(-f) - Ducted indoor unit	295
	9.7.1 Removal of the electrical box cover	295
	9.7.2 Removal of electrical components	295
	9.7.3 Removal of the inlet and outlet air thermistors	295
	9.7.4 Removal of the thermistors from the liquid and gas pipes	297
	9.7.5 Removal of the drain pan	297
	9.7.6 Fan removal	298
	9.7.7 Removal of the float switch	301
	9.7.8 Removal of the air filter	302
9.8	RPIM-(0.6-1.5)FSN4E - Ducted indoor unit	303
	9.8.1 Removal of the electrical box	303

	9.8.2 Removal of the inlet and outlet air thermistors	
	9.8.3 Outlet air thermistor	
	9.8.4 Removal of the fan parts	
	9.8.5 Removal of the float switch	
	9.8.6 Removal of the air filter	
9.9	RPK-FSN(H)3M - Wall mounted	307
	9.9.1 Removal of the air filter	307
	9.9.2 Removal of the front panel	307
	9.9.3 Electrical Box Structure	311
	9.9.4 Remove the electrical box cover	312
	9.9.5 Remove the switch cover	312
	9.9.6 Replacing PCB1 for Control	313
	9.9.7 Removing Electrical Box	315
	9.9.8 Removing AS Motor	317
	9.9.9 Removing Drain Pan	317
	9.9.10 Removing Heat Exchanger	320
	9.9.11 Removing Thermistors for Freeze Protection, Gas Pipe, Outlet Air and Inlet Air	323
	9.9.12 Removing Fan and Fan Motor	327
	9.9.13 Removing Electronic Expansion Valve Coil	329
	9.9.14 Removing Horizontal Louver	331
9.10	RPF(I)-(1.0-2.5)FSN2E - Floor and Floor concealed type	332
	9.10.1 Removal of the air inlet grille	332
	9.10.2 Removal of the air filter	332
	9.10.3 Removal of the air outlet grille	332
	9.10.4 Removal of the front panel	333
	9.10.5 Removal of the fan motor	333
	9.10.6 Removal of the printed circuit board (PCB)	334
	9.10.7 Removal of the thermistors from the liquid and gas piping	334
9.11	KPI-(252-2002)(E/X)4E - Energy recovery and active energy recovery ventilation units	335
	9.11.1 System description	335
	9.11.2 Structure and part names	335
	9.11.3 Service cover location	335
	9.11.4 Removal of Heat Exchanger	336
	9.11.5 Removal of the air filter	336
	9.11.6 Removal of the float switch (X4E series only)	337
	9.11.7 Removal of the damper motor	338
	9.11.8 Removal of the electrical box	339
	9.11.9 Removal of the PCB	339
	9.11.10 Removal of the fan motor	340
	9.11.11 Removal of the DX-Coil Module (X4E series only)	341
9.12	DX-Interface	342
	9.12.1 Structure and part names	342
	9.12.2 Removal of the electrical components	342

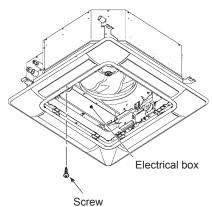

9.1 RCI-(1.0-6.0)FSN4 - 4-way cassette

9.1.1 Removing Air Filter and Air Inlet Grille

- 1 The air filter is attached inside the air inlet grille. While pushing both ends of knobs at the air inlet grille toward the arrow direction, open the air inlet grille.
- 2 Hold the lower side of the air inlet grille keeping it inclined. Remove the hooks of air filter from the air inlet grille and remove the air filter.
- 3 Remove the supporting string from the air panel. After lifting the air inlet grille keeping it inclined, draw the air inlet grille forward to remove.
- 4 When attaching the air inlet grille, the supporting string shall be attached to the air panel.

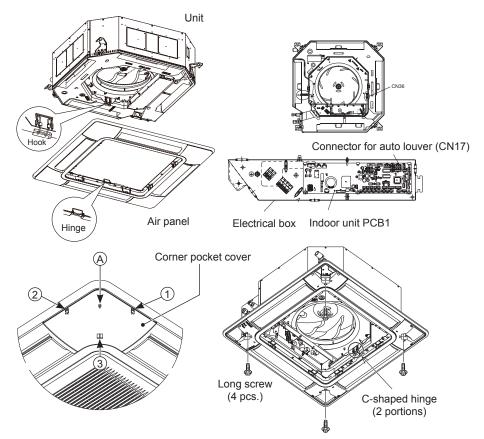
A CAUTION

TURN OFF all power source switches.



9.1.2 Removing Electrical Box Cover

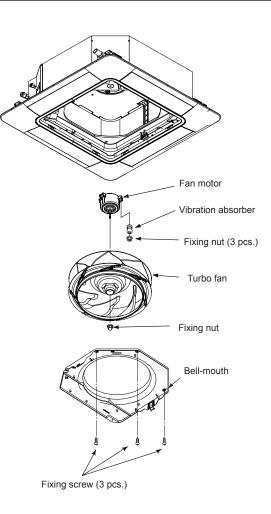
- 1 The electrical box appears when opening the air inlet grille. Remove the fixing screw for electrical box cover and open the electrical box.
- 2 The electrical box cover can hook onto the electrical box during the maintenance.

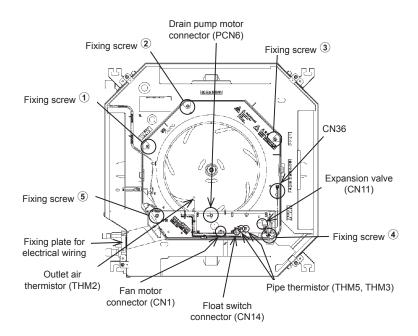

A CAUTION

Pay attention not to fall the electrical box cover.

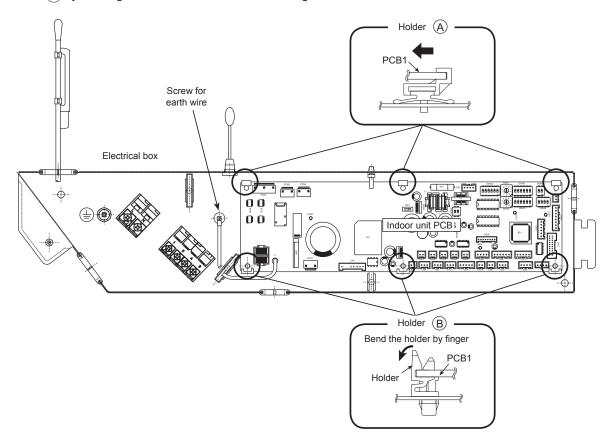
9.1.3 Removing Optional Air Panel

- 1 Open the air inlet grille. Remove the connector (CN36) at the air panel from the connector for auto louver (CN17) on the indoor unit PCB1.
- 2 Remove the air inlet grille from the air panel.
- 3 Remove four (4) corner pocket covers from the air panel. They can be removed pulling "(A)" part toward the arrow direction in the figure below.
 - *To attach the corner pocket covers again, insert the fixing hooks (1) and (2) to the air panel and insert the fixing hook (3) to the air panel.
- 4 Remove four (4) long screws from the air panel. Remove them with attention to temporally hook hinges of air panel (2 portions) onto hooks of unit (2 portions). Then, remove the air panel after unhooking two (2) hinges from the two (2) hooks.




9.1.4 Removing turbo fan and fan motor

- 1 Remove the air inlet grille and the electrical box cover according to the item "9.1.1 Removing Air Filter and Air Inlet Grille" and the item "9.1.2 Removing Electrical Box Cover".
- 2 Moving Electrical Box
 - a. Remove the outlet air thermistor (THM2), the drain pump motor connector (PCN6), the float switch connector (CN14), the pipe thermistors (THM5 and THM3), the expansion valve (CN11) and the fan motor connector (CN1) from indoor unit PCB1.
 - b. Remove the fixing screws (4) and (5) for electrical box and hang the electrical box from the unit.
- 3 Removing Bell-Mouth. Remove three (3) fixing screws (1), (2) and (3) for bell-mouth fixed to the drain pan, and remove the bell-mouth.
- 4 Removing Turbo Fan and Fan Motor Remove the turbo fan after the fixing nut for the turbo fan is removed. Remove the fan motor after three (3) fixing nuts for the fan motor are removed. (When reassembling, the tightening torque for nuts shall be approximately 8N-m.)


When reassembling, temporally fix the fixing screws (1) to (5), and align the centre of turbo fan and bell-mouth to match. Tighten securely after keeping the clearance between the turbo fan and the bell-mouth evenly. In addition, securely fix lead wires for fan motor, 2 pipe thermistors and expansion valve by the cord clamp attaching at the partition plate.

9.1.5 Removing Printed Circuit Board (PCB1)

- 1 Remove the air inlet grille according to the item "9.1.1 Removing Air Filter and Air Inlet Grille".
- 2 Remove the electrical box according to the item "9.1.2 Removing Electrical Box Cover".
- 3 Disconnect all wiring connectors from PCB1.
- 4 Remove the screw for earth wire.
- The PCB1 is fixed by six (6) holders. Bend the holders (B) by finger and raise the PCB1. Remove the PCB1 from the holders (A) by drawing it towards arrow direction in the figure below.

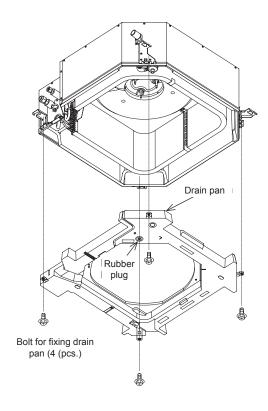
- Do not touch electrical parts on PCB1.
- Pay attention not to apply an excessive force to PCB1. It may cause failure of PCB1.
- When reassembling, attach connectors to the correct position. If not, the PCB1 may be damaged. In addition, securely attach the screw for earth wire.

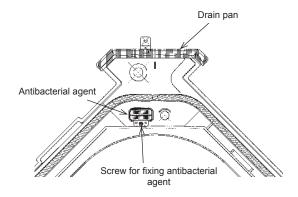
9.1.6 Removing Drain Pan

- 1 Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the electrical box cover according to the item "9.1.2" Removing Electrical Box Cover". Disconnect connectors of air outlet thermistor, 2 pipe thermistors (gas and liquid), the expansion valve, the drain pump, the float switch and the fan motor.
- 3 Remove the electrical box and the bell-mouth according to the item "9.1.4 Removing turbo fan and fan motor".
- 4 Draining Drain Water

Pull out the rubber plug from the drain pan, and drain the water remaining in the drain pan. Although the silicon sealant is applied around the rubber plug, the rubber plug can be removed cutting the silicon sealant by a cutter. (Pay attention not to damage the rubber plug by a cutter.) In addition, check the clogging at the drain hole.

5 Removing Drain Pan

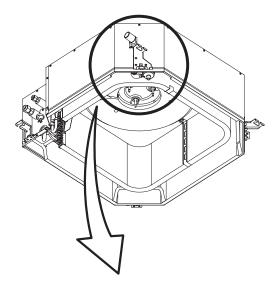

Remove four (4) bolts fixing the drain pan. Remove the drain

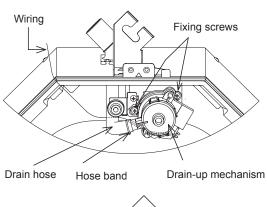


When attaching the rubber plug again, push in it into the drain hole by using Phillips Screwdriver, etc. after the rubber plug is wet by water. Seal the rubber plug after the silicone sealant is applied around the flange part of rubber plug.

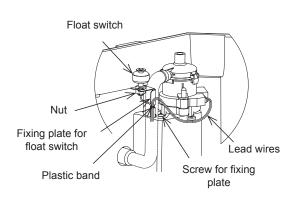
9.1.7 Removing Antibacterial Agent

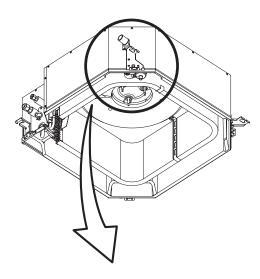
- Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the electrical box cover according to the item "9.1.2" Removing Electrical Box Cover". Disconnect connectors of air outlet thermistor, 2 pipe thermistors (gas and liquid), the expansion valve, the drain pump, the float switch and the fan
- 3 Remove the drain pan according to the item "9.1.6 Removing
- 4 Remove the antibacterial agent (cased) fixed inside the drain pan by screw.

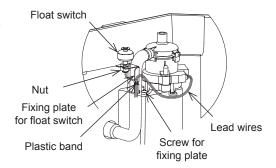



9.1.8 Removing Drain-Up Mechanism

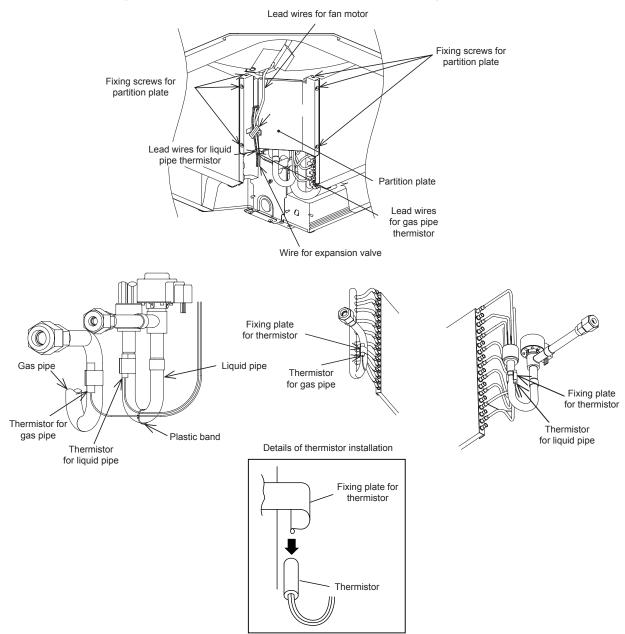
- 1 Remove the drain pan according to the item "9.1.6 Removing Drain Pan".
- 2 Remove the insulation which attaches the wires for float switch and drain-up mechanism together.
- 3 Cut the plastic band fixing the wires at the fixing plate for float switch.
- 4 Cut the hose band for drain hose by nipper, and remove the drain hose from the drain-up mechanism.
- Remove two (2) fixing screws for drain-up mechanism. When removing, hold the drain-up mechanism by hand in order not to fall.
- 6 Remove the drain-up mechanism.


When reassembling, wrap up the wires for float switch and drain-up mechanism together by the insulation Fix securely them to the original position. When attaching the drain pan again, pay attention not to pull the wires strongly. Otherwise, the insulation attaching at the cabinet may be peeled.



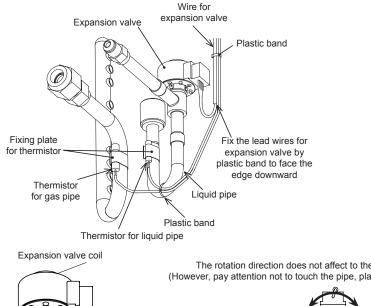

9.1.9 Removing Float Switch

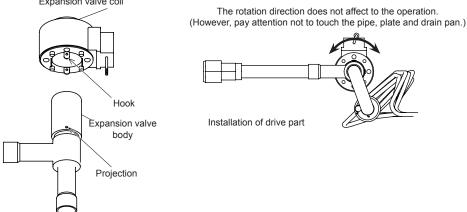
- 1 Remove the drain pan according to the item "9.1.6 Removing Drain Pan".
- 2 Remove the insulation which attaches the wires for float switch and drain-up mechanism together.
- 3 Cut the plastic band fixing the wires at the fixing plate for float switch
- 4 Removing Float Switch. The float switch is attached next to the drain-up mechanism. Remove the float switch by loosening the fixing screw for the fixing base.


- When reassembling, wrap up the wires for float switch and drain-up mechanism together by the insulation. Fix securely them to the original position. When attaching the drain pan again, pay attention not to pull the wires strongly. Otherwise, the insulation attaching at the cabinet may be peeled.
- Pay attention to handle the float switch. If it is dropped to a floor, the malfunction may occur.
- When attaching the float switch, tighten the screw by hand. (Do not use a motor-driven screwdriver.)

9.1.10 Removing Thermistors for Liquid Pipe and Gas Pipe

- 1 Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the bell-mouth according to the item "9.1.4 Removing turbo fan and fan motor".
- 3 Remove the drain pan according to the item "9.1.6 Removing Drain Pan".
- 4 Removing Partition Plate. Remove six (6) fixing screws for partition plate. Remove lead wires (for fan motor, 2 pipe thermistors and expansion valve) from the cord clamp.
 - * When reassembling, bind lead wires (for liquid pipe and gas pipe thermistors) together by the plastic band (field-supplied).
- 5 Remove the fixing plate for thermistor from the gas pipe, and remove the gas pipe thermistor.
- 6 Remove the fixing plate for thermistor from the liquid pipe, and remove the liquid pipe thermistor.
 - * When reassembling, securely fix lead wires (for fan motor, 2 pipe thermistors and expansion valve) together by the cord clamp attaching at the partition plate and attach each thermistor to the original position.


Fix lead wires (for 2 pipe thermistors and expansion valve) together by the plastic band to face the edge of vinyl tube downward as shown in the figure of the item "9.1.11 Removing Electronic Expansion Valve Coil". If the lead wires are not fixed correctly, it may cause water leakage.


9.1.11 Removing Electronic Expansion Valve Coil

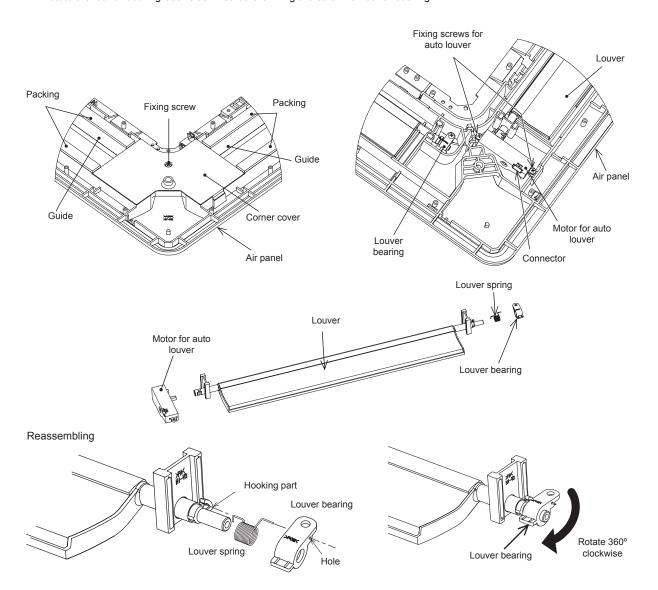
A CAUTION

TURN OFF all power source switches.

- 1 Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the bell-mouth according to the item "9.1.4 Removing turbo fan and fan motor".
- 3 Remove the drain pan according to the item "9.1.6 Removing Drain Pan".
- 4 Remove the partition plate according to the item "9.1.10 Removing Thermistors for Liquid Pipe and Gas Pipe".

- 5 Cut the plastic band fixing lead wires (for 2 pipe thermistors and expansion valve).
- 6 Remove the hooks of the expansion valve coil from the projection of the expansion valve body by a few turn of expansion valve coil. Pull up and remove the expansion valve coil. At this time, pay attention not to twist the pipes.
- 7 Insert the new expansion valve coil for replacement to the expansion valve body. When inserting, fix the expansion valve coil to catch the projections onto the hooks.

- The hooks are located each 90°, and the projections are located each 180°.
- The hooks shall catch onto the projections completely though the rotation direction does not affect to the operation. If the hooks do not completely catch onto the projections, it may cause malfunction of expansion valve coil.
- 8 If the replacement work is completed, fix the wire for expansion valve near the expansion valve coil by plastic band. At this time, fix the lead wires for expansion valve to face the edge downward. After fixing the lead wires for expansion valve, fix again lead wires (for 2 pipe thermistors and the expansion valve) together by the plastic band.

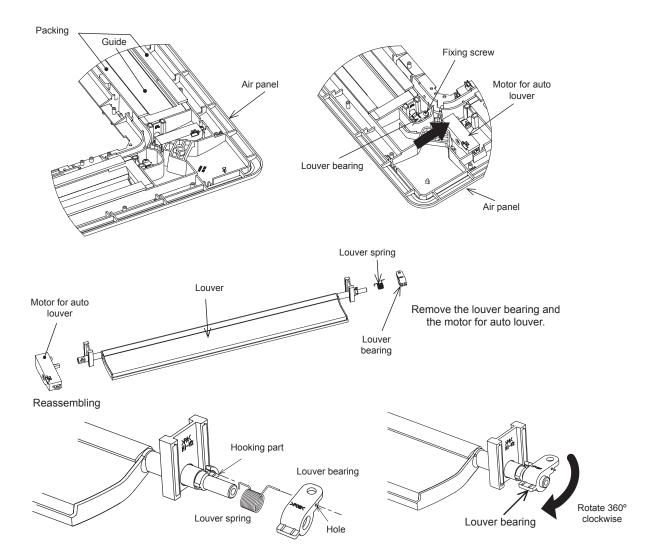

When reassembling, securely fix lead wires (for fan motor, 2 pipe thermistors and expansion valve) together by the cord clamp attaching at the partition plate.

9.1.12 Removing Auto Louver Motors

- 1 Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the fixing screws for each corner cover and remove the corner covers.
- 3 Remove the packing and guides.
- 4 Remove two (2) fixing screws for each motor from the air panel.
- 5 Remove the screw for louver bearing, and pull it out from the air panel. Then, remove the louvres, louver bearings and motors.
- 6 Remove the motors from the louvres.
- 7 Remove each connector connected to the motors.

i NOTE

- When reassembling, securely catch the C-shaped part of louver spring onto the hooking part of louver. Additionally, insert the L-shaped part of louver spring into the hole of louver bearing.
- Rotate the louver bearing 360° clockwise before fixing the screw for louver bearing.

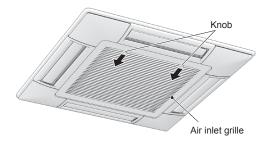


9.1.13 Removing Louver

- 1 Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the corner cover according to the item "9.1.12 Removing Auto Louver Motors".
- 3 Remove the packing and guides.
- 4 Remove two (2) fixing screws for motors from the air panel. Remove the screw for louver bearing, and pull it out from the air panel. Then, remove the louvres, louver bearings and motors.
- 5 Remove the motors for auto louver according to the item "9.1.12 Removing Auto Louver Motors".
- 6 Remove each louver bearing and louver spring.

i NOTE

- When reassembling, securely catch the C-shaped part of louver spring onto the hooking part of louver. Additionally, insert the L-shaped part of louver spring into the hole of louver bearing.
- Rotate the louver bearing 360o clockwise before fixing the screw for louver bearing.

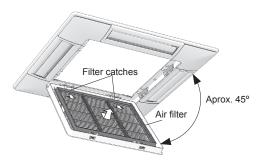


9

9.2 RCIM-(0.6-2.5)FSN4(E) - 4-way cassette (compact)

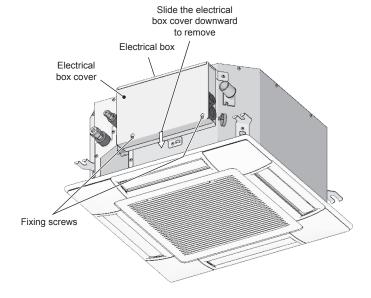
9.2.1 Removal of the air filter

- 1 The long-lasting filter is located inside the air inlet grille.
- 2 Press the knobs in the direction indicated by the arrows and open the air inlet grille.
- 3 Remove the filter from the grille by holding onto the lower part of the grille and the filter and detaching the blocked part.



9.2.2 Removal of the air inlet grille

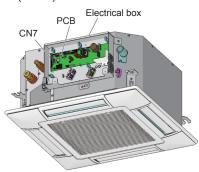
- 1 Lift the grille approximately 45° angle from the air panel surface..
- 2 Tilt the air inlet grille, lift it up to draw it forward



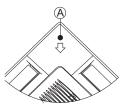
• If the louvers are to be moved, for example for cleaning purposes, select automatic swing mode to move the four louvers to the same position.

9.2.3 Removal of the electrical box cover

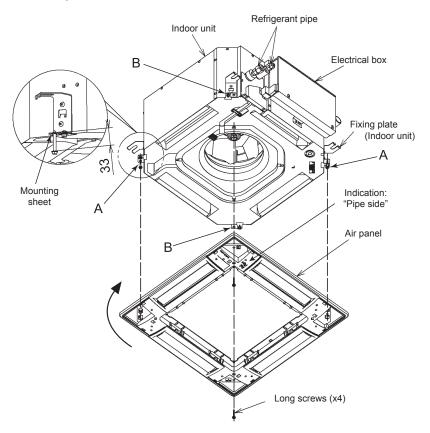
- 1 The electrical box can be removed by opening the air inlet grille.
- 2 Loosen 2 fixing screws from the electrical box cover and remove it.



The electrical box is placed outside the unit. Access to the electrical box must be by the hatch close to the indoor unit.


9.2.4 Removal of the optional air panel

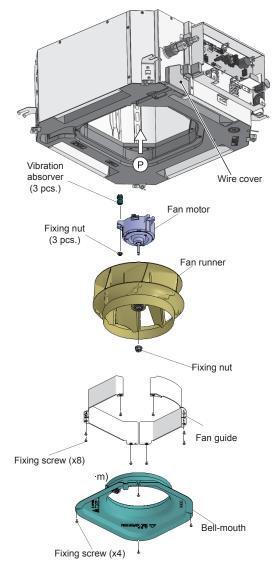
1 Remove the auto swing motor connector (CN17) from PCB



2 Remove the corner covers.

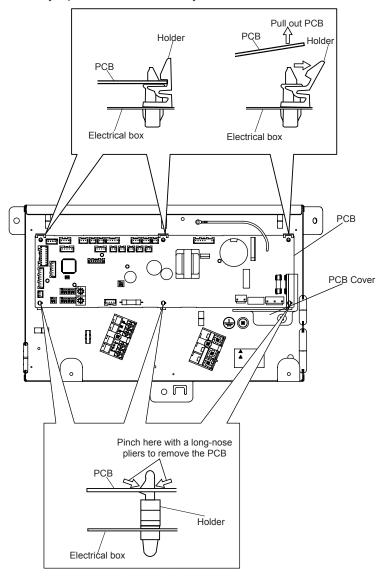
Corner covers can be removed pulling "A" part, toward the arrow direction, shown in the figure below.

3 Remove the long screws of "A" at the air panel. Loosen the long screws of "B", and rotate the air panel to the arrow direction to remove the air panel.



9.2.5 Removal of the fan runner and the fan motor

- 1 Remove the air inlet grille as indicated in "9.3.1 Removal of the Air filter and the Air inlet grille".
- 2 Remove the bell-mouth. Remove the 4 fixing screws attaching the bell-mouth to the drain pan and remove the bell-mouth.
- 3 Removing the fan guide. Remove the 8 fixing screws and remove the drain pan.
- 4 Removing the Fan runner and the Fan Motor
 - a. Remove the nut and the washer fixing the fan runner.
 - b. Remove 3 nuts fixing the fan motor.
 - c. Then remove the fan motor.



When reassembling these parts, tighten the nuts with a tightening torque of 8N-m.

9.2.6 Removal of the printed circuit board (PCB)

- 1 Remove the electrical box cover as indicated in chapter "9.2.3 Removal of the electrical box cover".
- Disconnect all wire connectors from the indoor unit PCB. 2
- 3 Remove the screw fixing the earth wire terminal.
- 4 Remove the screw fixing the PCB cover. THen, remove the PCB cover.
- The indoor unit PCB is fixed by 6 plastic holders. Carefully Pull out the PCB from each holder, as shown in the figure.

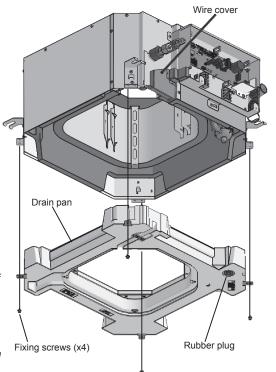
⚠ CAUTION

- Do not touch the electrical components of the PCB.
- Do not apply force to the PCB, as this could damage it.
- Pay special attention to the position of the connectors on the PCB. An incorrect position during installation may damage the PCB.

9.2.7 Removal of the drain pan

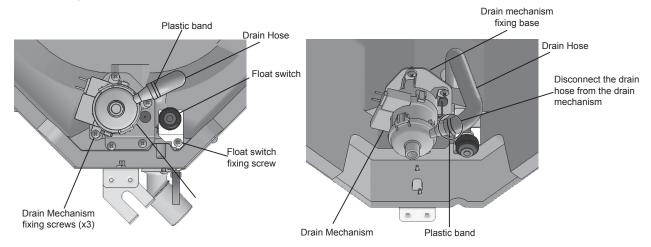
- Remove the air panel in line with the instructions given in chapter "9.2.4 Removal of the optional air panel".
- 2 Remove the screw of the wire cover. Then, remove the wire cover.
- 3 Remove the electrical box cover as indicated in chapter "9.2.3" Removal of the electrical box cover".

Separate the connectors from:


- a. The liquid pipe thermistor.
- b. The gas pipe thermistor.
- c. The electronic expansion valve.
- d. The fan motor.
- Remove the bell-mouth as described in "9.2.5 Removal of the fan runner and the fan motor"
- 5 Drain the water
 - a. Pull out the rubber plug from the drain pan, and drain the water remaining in the drain pan. Although silicon sealant is aplied over the rubber plug, the rubber plug can be removed by pulling the bottom side.
- 6 Check any clogging in the drain hole. Proceed to empty the pan of water by removing the rubber plug.

- The plug is sealed with silicone but can be easily removed by pulling on the bottom of it.
- Do not use a knife or similar to remove the rubber plug, as this could
- Do not remove or damage the lower plug insulation when refitting.
- 7 Remove the drain pan after removing the 4 set screws, pulling it carefully downwards.

- Do not use a sharp tool, such as a screwdriver, to fit the rubber plug, as this could damage it.
- After fitting the plug, there must be a clearance of 2 3 mm between it and the drain pan.



9.2.8 Removal of the drain mechanism

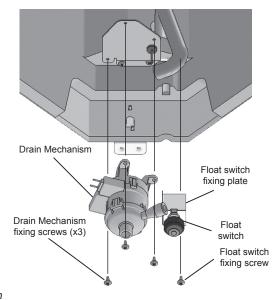
- 1 Remove the drain pan as indicated in chapter "9.2.7 Removal of the drain pan".
- 2 Remove the lead wires of the drain pan mechanism, float switch and outlet air thermistor gathered with vinyl tube and a clamping band.
- 3 Cut the plastic band and disconnect the drain hose from the drain mechanism.
- 4 Hold the drain mechanism and remove the 3 screws from the mechanism securing plate.
- 5 Remove the mechanism with the securing plate.

i NOTE

- When installing, fit the drain hose as far as possible in the pump.
- After attaching the drain mechanism, check that the drain hose does not contact the fixing base of the drain mechanism. If it contacts, adjust the position of the drain hose.
- When reassembling, wrap up the lead wires for the drain mechanism, the float switch, and the outlet air thermistor together with the vinyl tube, seal with filament tape and then tighten with the clamping. Fix the gathered wires with the plastic band attached to the fixing base of the drain mechanism.

9.2.9 Removal of the float switch

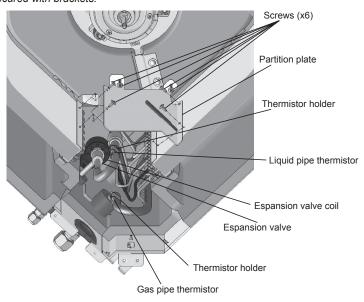
- 1 Remove the drain pan as indicated in chapter "9.2.7 Removal of the drain pan".
- 2 Remove the lead wires for the drain mechanism, the float switch and the outlet air thermistor, as described in section "9.2.8 Removal of the drain mechanism"



The float switch is attached to the drain pan.

- 3 Remove the 3 screws securing the drain mechanism to remove the mechanism.
- 4 Remove the fixing plate for the float switch by removing the fixing
- 5 Loosen the resin nut securing the float switch and remove it.

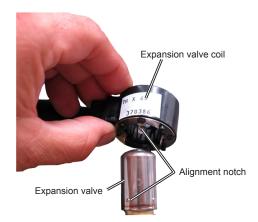
- When refitting, make sure the hook is fitted into the groove in the drain pan and screw into place.
- The torque value of the resin nut is 0.3 0.4 Nm. If the torque value is higher, the nut will be damaged.



9.2.10 Removal of the thermistors from the liquid and gas pipes

- Remove the optional air panel in line with the instructions given in chapter "9.2.4 Removal of the optional air panel". 1
- 2 Remove the bell-mouth and the fan runner as explained in chapter "9.2.5 Removal of the fan runner and the fan
- 3 Remove the drain pan as indicated in chapter "9.2.7 Removal of the drain pan".
- 4 Remove the evaporator partition plate securing the heat exchanger by removing the five screws.
- 5 Remove the thermistors:
 - a. Remove the butyl sheet attached to each thermistor
 - b. Remove each thermistor for the gas and the liquid pipe. Note that each thermistor is fixed with a thermistor holder.

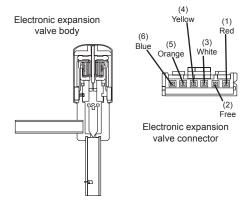
- The thermistor protection and securing system is the same on the gas and liquid pipe.
- The thermistors are secured with brackets.



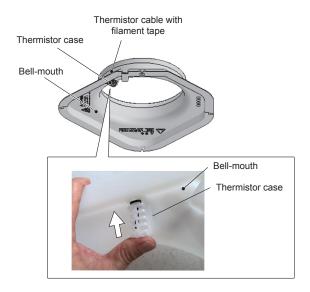
9.2.11 Removal of the electronic expansion valve coil

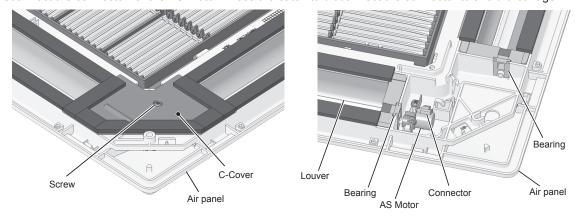
- 1 Remove the optional air panel in line with the instructions given in chapter "9.2.4 Removal of the optional air panel".
- 2 Remove the bell-mouth and the fan runner as indicated in chapter "9.2.5 Removal of the fan runner and the fan motor".
- 3 Remove the evaporator partition plate securing the heat exchanger by removing the five screws.
- 4 Remove the electronic expansion valve butyl sheet.
- Remove the expansion valve coil by firmly pushing it.

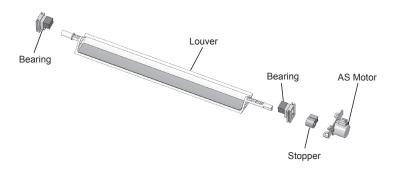
The coil has a fixation system which comprises a protrusion at the Expansion valve that has to match with the orifices located at the coil. (See the picture beside), called alignment notch.

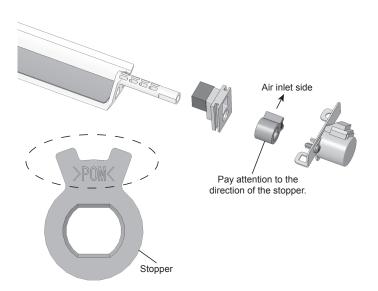

- 6 Once replaced, fit the electronic expansion valve in the reverse manner as indicated for the removal process.
- 7 Position the butyl sheet, attaching it correctly to the valve.

Check that the cables do not touch the fan duct after installation is complete.


Electronic expansion valve coil


9.2.12 Removal of the inlet air thermistor


- 1 Remove the air inlet thermistor.
- 2 Remove the bell-mouth as described in "9.2.5 Removal of the fan runner and the fan motor"
- 3 Tear off the filament tape, then remove the thermistor cable attached to the bell-mouth.
- 4 Push the thermistor case to the direction shown in the picture below to remove the air inlet thermistor with the thermistor case.

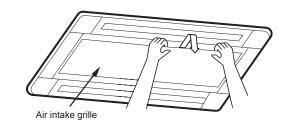


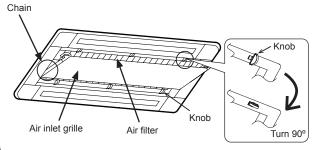
9.2.13 Removal of the automatic louver motor

- 1 Remove the optional air panel in line with the instructions given in chapter "9.2.4 Removal of the optional air panel".
- 2 Remove the fixing screw for C-cover and remove the C-cover.
- 3 Remove the fixing screw on the AS motor from the air panel. Then, remove the louver, the louver bearing and the AS
- 4 Disconnect the connector for the AS motor. Press the catch to disconnect the connector to avoid breakage.

9.3 RCD-(0.8-6.0)FSN3 - 2-way cassette

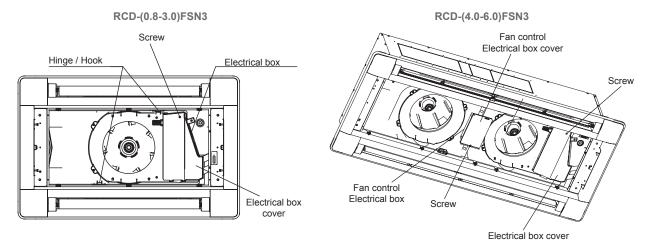
9.3.1 Removal of the Air filter and the Air inlet grille


i NOTE


The Air filter is located inside the air inlet grille.

- 1 Lift up one side of the air inlet flat grille then slide to arrow direction. Pull the air inlet flat grille to the downward.
- 2 Turn all the knobs 90° then remove the air filter. (6 knobs for RCD-0.8 to 3.0FSN3, 10 points for RCD-4.0 to 6.0FSN3).
- 3 Remove the chain from the air panel.
- 4 Open the air inlet flat grille at an approximately 40° angle from the air panel surface. Tilting the air inlet flat grille, lift it up to draw forward then remove it.

The air inlet flat grille can be opened up to 90°. However, it cannot be removed from the air panel at that angle.

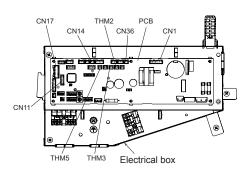


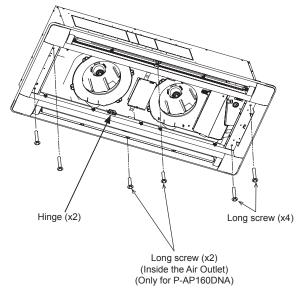
9.3.2 Removal of the electrical box

NOTE

The Electrical box appears when opening the air inlet grille.

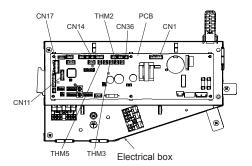
- 1 Open the air inlet grille.
- 2 Loosen the screw securing the electrical box cover. The electrical box cover does not need to be removed but keep hooked for maintenance work.

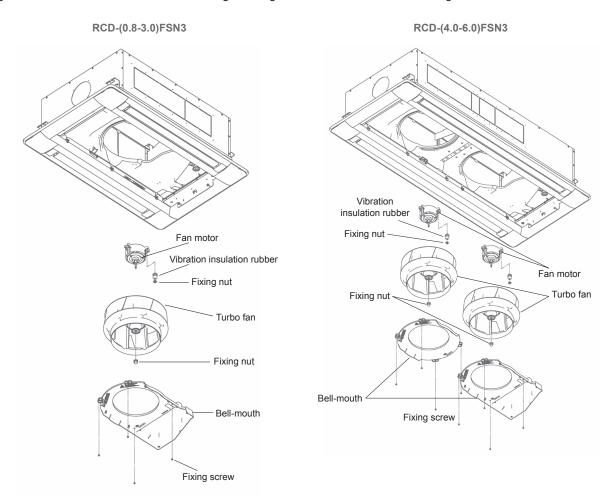




Pay attention during the removing work as the Electrical box may fall.

9.3.3 Removal of the optional air panel

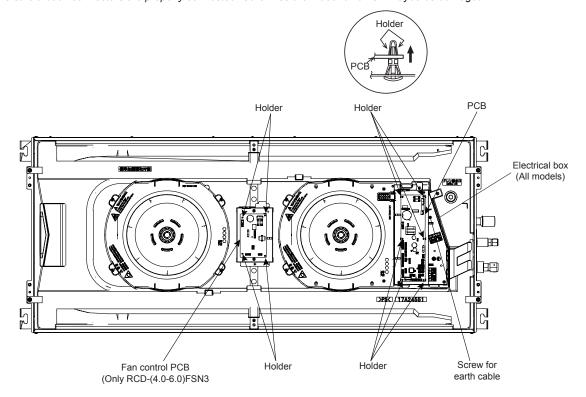

- 1 Open the air inlet grille.
- 2 Remove the electrical box cover.
- 3 Remove the connector (CN17) of the automatic louver on the indoor unit PCB.
- 4 Hang the air panel from the indoor unit by hooking the hinges and remove the long screws (4 for P-AP90DNA, 6 for P-AP160DNA) for air panel.
- 5 Then, remove the air panel by unhooking the hinges (x2) from the indoor unit drain pan.


9.3.4 Removal of the fan duct and the fan

- 1 Remove the electrical box cover according to the item "9.1.2 Removing Electrical Box Cover".
- 2 Remove the electrical box.
 - a. Remove the outlet air thermistor (THM2), the drain-up mechanism connector (CN36), the float switch connector (CN14), the liquid pipe and gas pipe thermistors (THM5, THM3), the expansion valve (CN11), the fan motor connector (CN1) and the auto louver motor connector (CN17) from the PCB.
 - For RCD-(4.0-6.0)FSN3, remove the fan control lead wire (x2) from the bell-mouth then remove the fan motor connector (CN4) inside the fan control electrical box.
 - b. Remove the 2 fixing screws for the electrical box and remove the electrical box.
 - For RCD-(4.0-6.0)FSN3, remove the 2 fixing screws for the fan control electrical box and remove the fan control electrical box.

3 Removing the Bell-mouth. Remove 4 fixing screws for the bell-mouth fixed to the drain pan, and remove the bell-mouth (1 Bell-mouth for RCD-(0.8-3.0)FSN3, 2 bell-mouth for RCD-(4.0-6.0)FSN3).

- 4 Removing Turbo Fan and Fan Motor:
 - a. Hold the turbo fan and remove the fixing nut then remove the turbo fan.
 - b. Remove the 2 screws from the plate holding the fan motor lead wire then remove the fan motor.
 - c. Remove the fan motor lead wire from 2 code clamp for evaporator partition plate.
 - d. Remove the fixing nut and 3 vibration insulation rubber fixing the fan motor then remove the fan motor.
 - e. For RCD-(4.0-6.0)FSN3, remove the fan motor lead wire from 1 code clamp for fan partition plate placed on the centre of the indoor unit.
 - Remove the fixing nut and 3 vibration rubber fixing the fan motor the remove the fan motor.
 - f. For reassembling, fix the bell-mouth to the drain pan with fixing screws temporarily then fix the fan motor lead wire to 2 code clamp for the evaporator partition plate.
 - For RCD-(4.0-6.0)FSN3, fix the fan motor lead wire to 1 code clamp for the fan partition plate placed on the centre of the indoor unit.
 - g. Center the turbo fan and bell-mouth to get enough clearance then fasten the fixing screws.

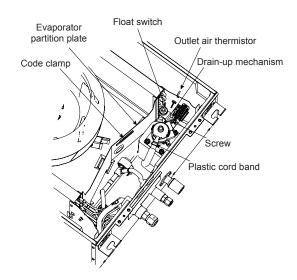


9.3.5 Removal of the printed circuit board (PCB)

- 1 Remove the electrical box cover according to the item "9.1.2 Removing Electrical Box Cover".
- 2 Disconnect all wire connectors from the indoor unit PCB.
- 3 Remove the screw for earth wire.
- 4 Remove the screw then remove the PCB cover.
- The indoor unit PCB is fixed by holders (6 holders for PCB, 4 holders for fan control PCB). Pinch the holder with longnose pliers and pull out PCB from the holders.

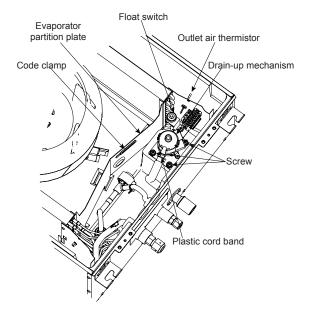
∠!\ CAUTION

- Do not touch the electrical components of the PCB.
- Do not apply force to the PCB, as this could damage it.
- The sealed earthing cable and the transformer are secured by a screw. When installing, be particularly careful not to overtighten the
- Make sure that all connectors are properly connected. Otherwise the Indoor unit PCB maybe be damaged.



9.3.6 Removal of the float switch

- 1 Remove the Drain pan, as explained in "9.3.8 Removal of the drain pan"
- 2 Remove the lead wires for the Drain up mechanism, the Float switch and the Outlet air thermistor, as explained in "9.3.6 Removal of the float switch"
- 3 Remove the Float switch lead wire from the core clamp at the evaporator partition plate.
- 4 Cut the plastic cord bands gathering the lead wires of the Float switch, the drain mechanism and the Outlet air thermistor
- 5 Remove the Float switch by removing the fixing screws of the Float switch fixing plate and remove the Float switch.

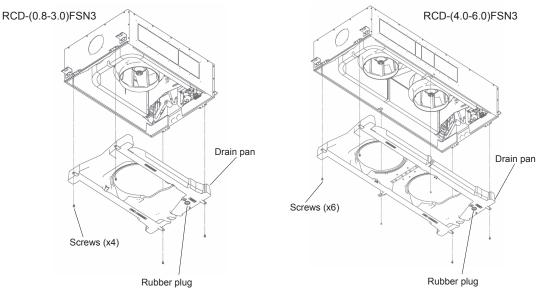


- for the reassembling, proceed in the reverse way than disassembling.
- The torque value of the resin nut is 0.3 0.4 Nm. If the torque value is higher, the nut will be damaged.

9.3.7 Removal of the drain mechanism

- 1 Remove the drain pan according to the item "9.1.6 Removing Drain Pan".
- 2 Remove the drain-up mechanism lead wire from the code clamp attached to the evaporator partition plate.
- 3 Cut the clamping band gathering the lead wires for drainup mechanism, float switch and outlet air thermistor.
- 4 Spread out the plastic band for drain hose the remove the drain hose from drain-up mechanism.
- 5 Remove three fixing screws for the drain-up mechanism. Make sure to hold the drain-up mechanism by hand so that it will not fall off.
- 6 Then remove the drain-up mechanism.

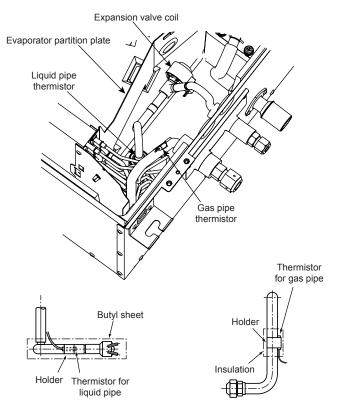
9.3.8 Removal of the drain pan


- 1 Remove the air panel according to the item "9.1.4 Removing turbo fan and fan motor".
- 2 Remove the screw then remove the wire cover.
- 3 Remove the electrical box cover according to the item "9.1.2 Removing Electrical Box Cover".
 Disconnect the connectors of the gas pipe thermistor, the liquid pipe thermistor, the expansion valve and the fan motor.
- 4 Remove the bell-mouth according to the item "9.1.4 Removing turbo fan and fan motor".
- 5 Draining:
 - a. Pull out the rubber plug from the drain pan, and drain the water remaining in the drain pan. Although silicon sealant is applied over the rubber plug, the rubber plug can be removed by pulling the bottom side.

Be careful not to damage the rubber plug with a cutter knife.

- b. Check any clogging in the drain hole.
- 6 Removing Drain Pan

- a. Remove the screws fixing the drain pan to the unit (4 screws for RCD-(0.8-3.0)FSN3, 6 screws for RCD-(4.0-6.0)
- b. Then remove the drain pan from the unit.



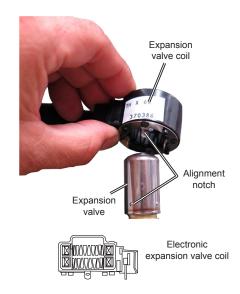
9.3.9 Removal of the thermistors from the liquid and gas pipes

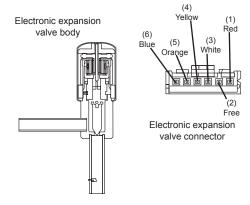
- 1 Remove the air inlet grille as indicated in chapter "9.3.1 Removal of the Air filter and the Air inlet grille".
- 2 Remove the fan duct and the fan as indicated in chapter "9.3.4 Removal of the fan duct and the fan".
- 3 Remove the drain pan as indicated in chapter "9.3.8" Removal of the drain pan".
- 4 Remove the butyl sheet covering the thermistor. Remove the plate securing the thermistor to the pipe on which it is located and remove.

- The thermistor protection and securing system is the same on the gas and liquid pipe.
- The thermistors are secured with brackets.

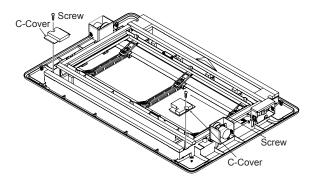
9.3.10 Removal of the electronic expansion valve coil

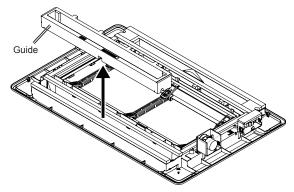
- 1 Remove the optional air panel in line with the instructions given in chapter "9.2.4 Removal of the optional air panel".
- 2 Remove the bell-mouth and the fan runner as indicated in chapter "9.2.5 Removal of the fan runner and the fan motor".
- 3 Remove the evaporator partition plate securing the heat exchanger by removing the five screws.
- 4 Remove the electronic expansion valve butyl sheet.
- 5 Remove the expansion valve coil by firmly pushing it.




The coil has a fixation system which comprises a protrusion at the Expansion valve that has to match with the orifices located at the coil. (See the picture beside), called alignment notch.

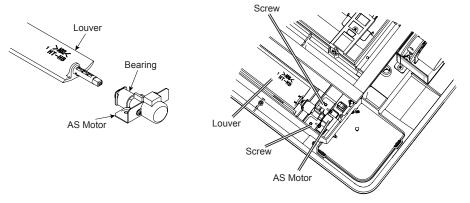
- 6 Once replaced, fit the electronic expansion valve in the reverse manner as indicated for the removal process.
- 7 Position the butyl sheet, attaching it correctly to the valve.


Check that the cables do not touch the fan duct after installation is complete.

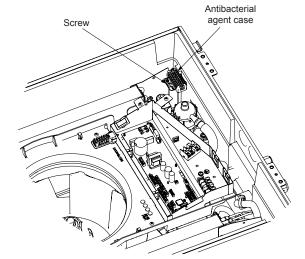


9.3.11 Removal of the automatic louver motor

- 1 Remove the air panel according to the item "9.1.3 Removing Optional Air Panel".
- 2 Remove the fixing screw for C-cover and remove the C-cover.

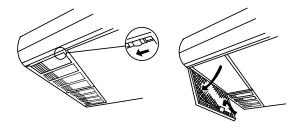


3 Peel off the off the panel rib for the sealing gasket the remove the guide.

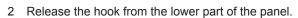

Disconnect the connector from the AS motor.

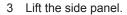
- 5 Remove two fixing screws for AS motor from the air panel. Then remove the louver and AS motor form the air panel.
- 6 Remove the louver from the bearing for AS motor.

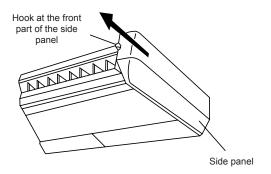
9.3.12 Remove the Anti bacterial agent case


- 1 Remove the air panel according to the item "9.1.3" Removing Optional Air Panel".
- 2 Remove the bell-mouth and turbo fan according to the item "9.1.4 Removing turbo fan and fan motor".
- 3 Remove the drain pan according to the item "9.1.6 Removing Drain Pan".
- 4 Remove 1 screw for antibacterial agent case then remove the antibacterial agent case.

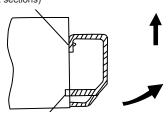
9.4 RPC-(3.0-6.0)FSN3E - Ceiling type


9.4.1 Removal of the air filter

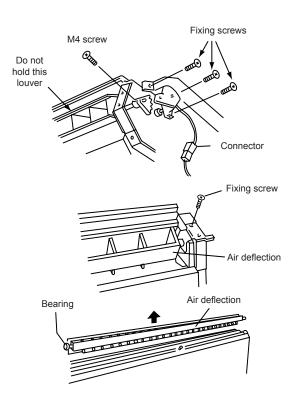

- Press the buttons on the grille backwards.
- 2 Open the air inlet grille downwards.
- 3 Lift the button and remove the filter.



9.4.2 Removal of the side panel

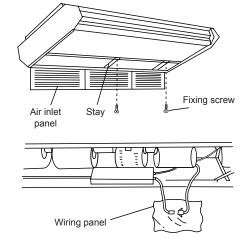

1 Pull the side panel forwards.

Hook at the upper part of the side panel (2 sections)


Hook at the upper part of the side panel (2 sections)

9.4.3 Removal of the air outlet grille

- 1 Remove the side panel in line with the instructions given in chapter "9.4.2 Removal of the side panel".
- 2 Remove the right shaft crank on the air louver.
- 3 Remove the four set screws from the louver and remove it.


The louver includes the linkage brackets.

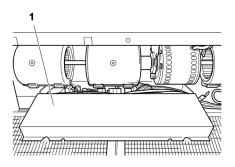
9.4.4 Removal of the fan motor

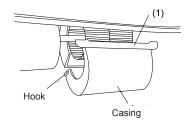
- 1 Open the air inlet grille as indicated in chapter "9.4.1" Removal of the air filter".
- 2 Remove the air inlet clip.

3 Separate the indoor fan motor connector.

Nº	Part
1	Electrical box

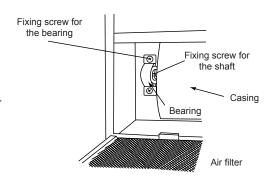
4 Remove the screws securing the box and attach to the lower frame.

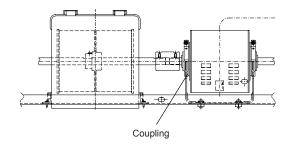



Hold onto the electrical box to prevent it from falling.

- 5 Press the four attachment points of the cover (1) inwards and remove it.
- 6 Loosen the coupling screws using a wrench.
- 7 Remove the securing flange and remove the fan motor by sliding it backwards.

Hold onto the motor to prevent it from falling.




9.4.5 Removal of the fan shaft support

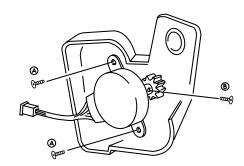
- Remove the side panel in line with the instructions given in chapter "9.4.2 Removal of the side panel".
- 2 Loosen the two bolts securing the support and the shaft using a hexagonal wrench.
- 3 Remove the four M8 set screws from the support and remove it.

9.4.6 Removal of the coupling

- 1 Remove the side panel in line with the instructions given in chapter "9.4.2 Removal of the side panel".
- 2 Remove the cover in two parts, as indicated in section "9.4.4" Removal of the fan motor".
- 3 Loosen the coupling screw using a hexagonal wrench.
- 4 Remove the M8 bolt securing the support as indicated in section "9.4.5 Removal of the fan shaft support".
- 5 Remove the coupling after removing the shaft and fan unit.

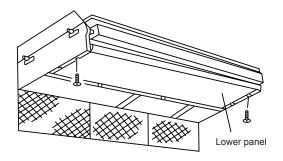
9.4.7 Removal of the automatic louver motor

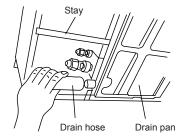
- 1 Remove the side panel in line with the instructions given in chapter "9.4.2 Removal of the side panel".
- 2 Remove the bolts (M4) from the AS motor assembly and remove the right shaft of the discharge air grille.

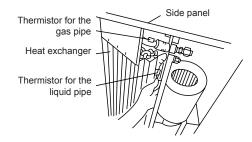


Be particularly careful not to damage the AS motor.

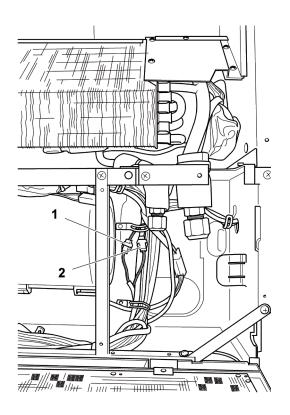
- 3 Remove the two bolts securing the automatic louver motor and remove the AS motor assembly securing plate.
- 4 Remove the bolt securing the automatic louver motor shaft and the AS pinion.




- Torque value of the two screws securing the automatic louver motor:
- Torque value of the screw securing the automatic louver motor shaft: 0.4 Nm.
- Apply the torque value using a torque wrench.


9.4.8 Removal of the thermistors from the liquid and gas pipes

- Remove the side panel in line with the instructions given in chapter "9.4.2 Removal of the side panel".
- 2 Remove the lower panel.



3 Disconnect the drain hose and remove the drain pan.

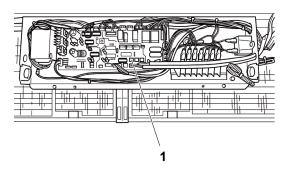
4 Remove the thermistors from the liquid and gas pipe.

Nº	Part
1	Gas thermistor (yellow connector)
2	Liquid thermistor (black connector)

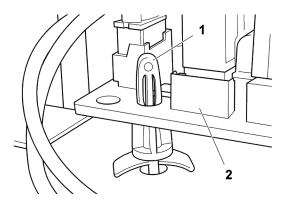
E-box cover

9.4.9 Removal of the printed circuit board (PCB)

- 1 Open the air inlet panel as indicated in chapter "9.4.1" Removal of the air filter".
- 2 Separate the connector from the fan motor wiring.
- 3 Remove the screws securing the box and attach to the lower frame.

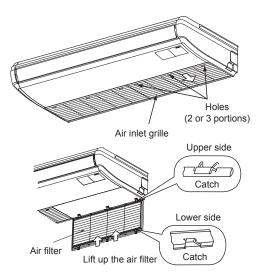

Hold onto the electrical box to prevent it from falling.

- 4 Remove the panel.
- 5 Carefully remove the securing supports from the printed control board (PCB) (four) by pressing carefully on the support tabs with long-tipped pliers.

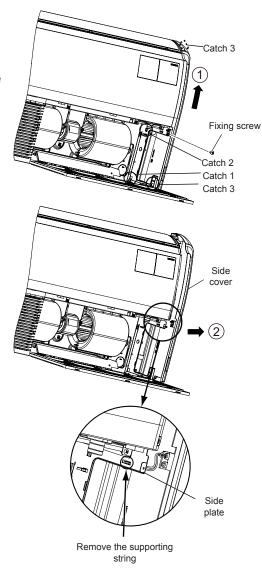


- Do not touch the electrical components of the PCB.
- Do not apply force to the PCB, as this could damage it.
- Pay special attention to the position of the connectors on the PCB. An incorrect position during installation may damage the PCB.

Nº	Part
1	PCB


N	10	Part
	1	Extended support part
2	2	PCB

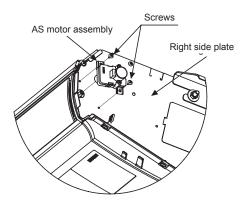
9.5 RPC-(1.5-6.0)FSN3 - Ceiling type

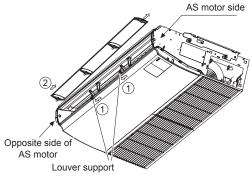

9.5.1 Removing Air Filter and Air Inlet Grille

- The air filter is attached inside the air inlet grille. Open the air inlet grille and remove the air filter.
- 2 Press and slide the cover of the air inlet grille in the direction of the arrow with fingers in the holes on the cover.
- 3 Then the air inlet grille is opened downward.
- 4 Lift up the air filter and release the catches on the air inlet grille to remove the air filter.

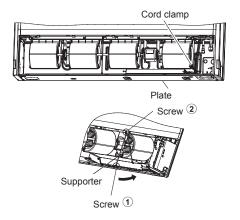
9.5.2 Removing Side Cover

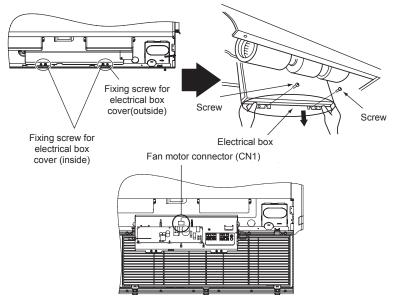
- 1 Open the air inlet grille downward according to the item "9.5.1" Removing Air Filter and Air Inlet Grille".
- 2 Remove the fixing screw for side cover.
- 3 Slide the side cover in the direction of the arrow (1) and release 3 catches. Then remove the side cover in the direction of the arrow (2).
- 4 Remove the supporting string from the side plate.


9.5.3 Removing Louver

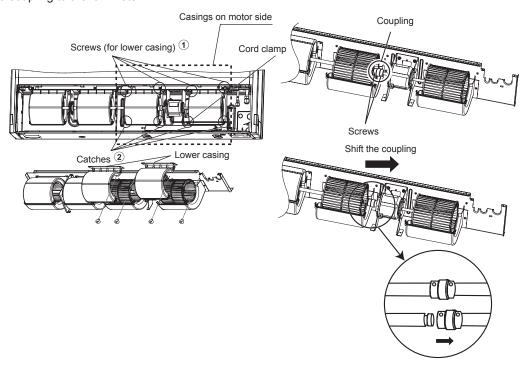

- Remove the side covers according to "9.5.2 Removing Side
- 2 Remove 2 screws fixing AS motor assembly to the right side plate.

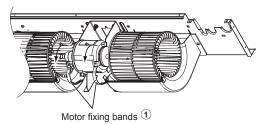
The louver includes the linkage brackets.

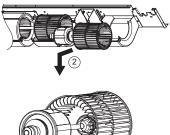

3 Bend the louver support (1) slightly and remove the louver from the louver support. Bend the louver in the direction of the arrow (2). Remove the louver shaft on the opposite side of the AS motor and then pull out the louver.



9.5.4 Removal of the fan motor

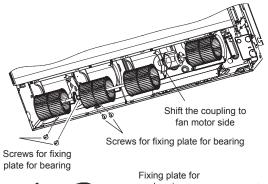

- 1 Open the air inlet grille as indicated in chapter "9.4.1 Removal of the air filter".
- 2 Open the air inlet grille downward according to the item "9.5.1" Removing Air Filter and Air Inlet Grille".
- 3 Remove the lead wires from the cord clamp on the plate (1 portion). (Only for RPC-(2.5/3.0)FSN3)
- 4 Remove the fixing screw for supporter (①) and loosen the fixing screw (2). Then rotate the supporter in the direction of the arrow.

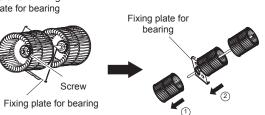

- 5 Remove 2 fixing screws for the electrical box cover. Remove 2 fixing screws for the electrical box and hook the electrical box on the frame at the lower part of the unit. Hold the electrical box not to drop it during the work.
- Remove the fan motor connector (CN1) from the Indoor Unit PCB.



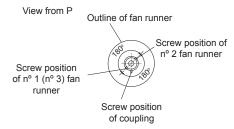
- 7 Remove the lead wires for the fan motor from the cord clamp on the plate.
- 8 Remove 2 fixing screws for each lower casing (1). Remove the lower casings by pushing 2 catches (2) inward. (Only 2 casings on the motor side shall be removed.) (Except for RPC-1.5 and 2.0FSN3).
- 9 Loosen 2 fixing screws for the coupling with a hexagon wrench.
- 10 Shift the coupling to the fan motor.

- 11 Remove 2 motor fixing bands (1). Remove the fan runner on the right and fan motor by shifting them in the direction of the arrow (2) with care not to drop them. It takes 2 people to carry out the work.
- 12 Remove the fixing screw for the fan runner with a hexagon wrench and remove the fan runner from the fan motor.

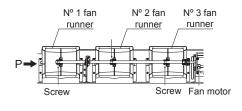


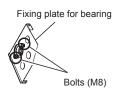

9.5.5 Removing Bearing (Except for RPC-1.5 and 2.0FSN3)

- 1 Open the air inlet grille downward according to "9.5.1 Removing Air Filter and Air Inlet Grille".
- 2 Remove the lower casing according to "9.5.4 Removal of the fan motor"
- 3 Loosen 2 fixing screws for the coupling with a hexagon wrench and shift the coupling to the fan motor side according to "9.5.4 Removal of the fan motor".
- 4 Remove 4 screws for the fixing plate for the bearing as shown in the figure. Remove the fixing plate for the bearing together with the shaft and fan runner. It takes 2 people to carry out the work.
- 5 Loosen 1 fixing screw for the fan runner with a hexagon wrench and remove the fan runner (1) from the shaft. Then pull the fixing plate for the bearing out from the shaft (2).



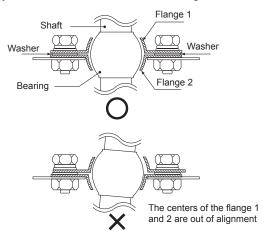
When pulling the fixing plate for the bearing out, do not damage the shaft surface contacting the bearing. If it is damaged, an abnormal noise may occur. When remounting the fan runners, mount them with each of them rotated by 180° as shown in the figure.





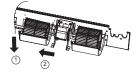
Each fan runner is installed at every 180° angle.

6 Remove 2 fixing bolts (M8) for the bearing and remove it. When mounting it, refer to the following notes.

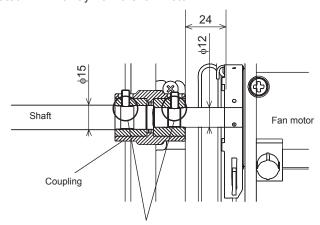


Notes for Mounting Bearing

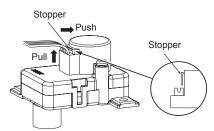
Mount the fixing plate for a flange bearing according to the following notes:

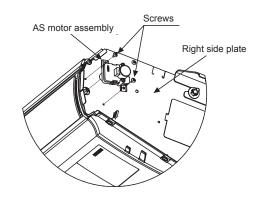

- Align the shaft centers of the flange 1 and flange 2.
- · Insert washers between the flanges.
- The tightening torque for bolts shall be 6N-m. This indoor unit utilizes the self-aligning bearing which enables the self-alignment by reducing the alignment torque for the bearing. Therefore, if the tightening work is not performed correctly, an abnormal noise may occur.
- Check that only the bearing body rotates and moves with the bolts tightened.

9.5.6 Removing Coupling (Except for RPC-1.5 and 2.0FSN3)


- 1 Open the air inlet grille downward according to "9.5.1 Removing Air Filter and Air Inlet Grille".
- 2 Remove the lower casing according to "9.5.4 Removal of the fan motor".
- 3 Loosen 2 fixing screws for the coupling with a hexagon wrench and shift the coupling to the fan motor according to "9.5.4 Removal of the fan motor".
- 4 Shift the shaft to the plate in the direction of the arrow (1). Then remove the coupling from the fan motor (2).

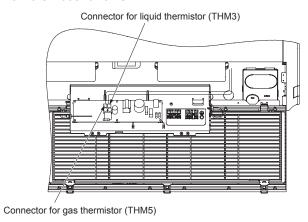
Notes for Remounting Coupling

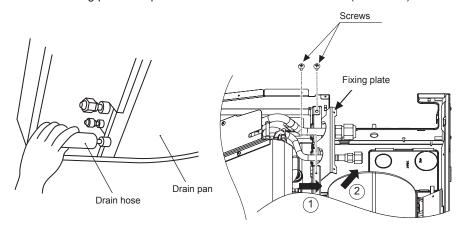

- · Tighten the fixing screws, inserting them into the grooves on the shaft.
- Pay attention to the insertion direction of the coupling because the diameters of the shaft and the motor shaft are different.
- · The coupling shall be located 24mm away from the fan motor.



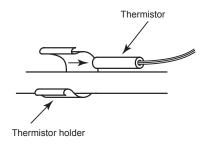
Tighten the fixing screws, inserting them into the grooves on the shaft

9.5.7 Removing Auto Louver Motor

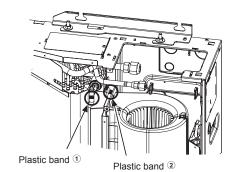

- 1 Remove the right side cover according to "9.5.2 Removing Side Cover".
- 2 Remove the AS motor assembly attached to the right end of the louver shaft.
- 3 Push the stopper to disconnect the connector.

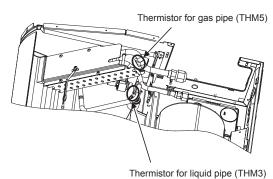


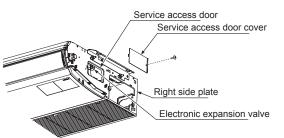
9.5.8 Removal of the thermistors from the liquid and gas pipes

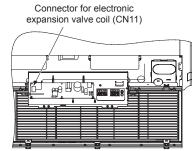

- 1 Open the air inlet grille downward according to "9.5.1 Removing Air Filter and Air Inlet Grille".
- 2 Remove the side covers according to "9.5.2 Removing Side Cover".
- 3 Remove the electrical box and hook it on the flame at the lower part of the unit according to "9.5.4 Removal of the fan motor".
- 4 Open the electrical box cover and disconnect the connectors for the gas pipe thermistor (yellow, THM5) and the liquid pipe thermistor (black, THM3) from the indoor unit PCB.

- 5 Remove the drain hose from the drain pan. Remove the screws (1.5 and 2HP: 9, 2.5 to 6HP: 10) fixing the drain pan to the indoor unit. Be careful in removing the drain pan because the water may have collected in the drain pan.
- 6 Remove the drain pan.
- 7 Remove 2 screws for the fixing plate and pull it out in the direction of the arrow (1 -> 2) to remove it.




- 8 Remove 2 plastic bands (1) and 2) tying the lead wires for the thermistors in a bundle.
- 9 Remove the butyl sheets attached to the thermistors.
- 10 Remove the thermistors for the liquid pipe and gas pipe from the unit

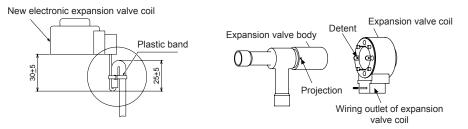

Take special care not to be injured by the heat exchanger fins.



9.5.9 Removing Electronic Expansion Valve Coil

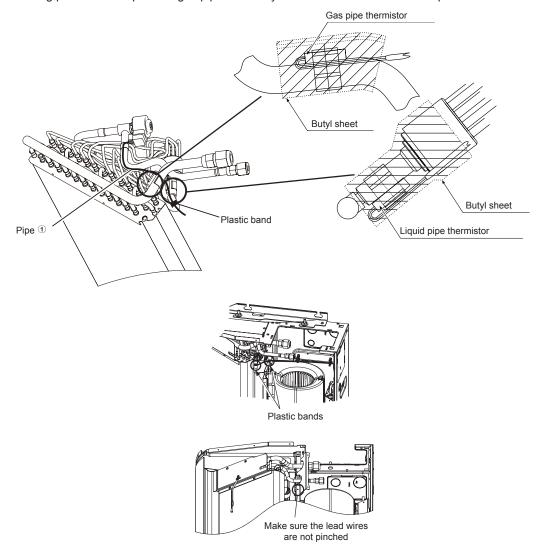
- 1 Remove the right side cover according to "9.5.2 Removing Side Cover".
- 2 Remove the service access door cover from the right side plate. Then the electronic expansion valve can be seen from the service access door.
- 3 Check the motion of the electronic expansion valve by hand.
- 4 Remove the electrical box and hook it on the flame at the lower part of the unit according to "9.5.4 Removal of the fan motor".
- 5 Open the electrical box cover and disconnect the connector (CN11) for the electronic expansion valve coil from the indoor unit PCB.

- 6 Remove the gas and liquid pipe thermistors according to "9.5.8 Removal of the thermistors from the liquid and gas pipes".
- 7 Remove 2 plastic bands tying the lead wires for the thermistors in a bundle according to "9.5.8 Removal of the thermistors from the liquid and gas pipes".
- 8 Rotate the expansion valve coil. After releasing the detents for the expansion valve coil from the projection portions of the expansion valve body, pull up the coil frontward to remove it.



Take care not to twist the piping.

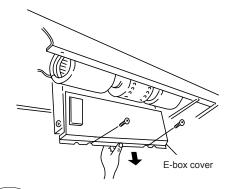
- 9 Tie the lead wires for a new expansion valve coil together with a plastic band as shown in the figure below.
- 10 Insert the new expansion valve coil for replacement into the expansion valve body. Fit the projection portions into the detents with the wiring outlet facing up.

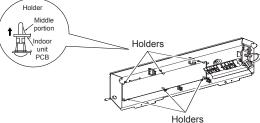


The detents are located 90° apart in a circle and the projections are located 180° apart in a circle. Fit the projection portions into the detents. If inserting the coil incorrectly, it may cause malfunction of the expansion valve coil.

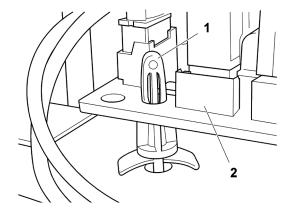
Notes for Mounting Pipe Thermistors and Expansion Valve Coil

- When mounting the pipe thermistors, pay attention to the outlet direction and position of the lead wires. Seal the thermistors with butyl sheets after mounting them.
- Run the lead wires for the expansion valve coil along the outside of the pipe (1). Tie the wires and the pipe thermistors in a bundle at 2 portions with plastic bands as shown in the figure below.
- · Attach the fixing plate for the liquid and gas pipes carefully so that the lead wires are not pinched.




9.5.10 Removal of the printed circuit board (PCB)

- 1 Open the air inlet grille downward according to "9.5.1 Removing Air Filter and Air Inlet Grille".
- 2 Remove the electrical box and hook it on the flame at the lower part of the unit according to "9.5.4 Removal of the fan motor".
- 3 Remove 2 fixing screws for the electrical box cover and remove it
- 4 Remove the 6 holders fixing the indoor unit PCB. Pinch the middle portion with a long-nose pliers and pull them out.


A CAUTION

- Do not touch the electrical components on the PCB.
- Do not apply an excessive force to the PCB nor bend it. Otherwise, it will lead to a PCB failure
- An incorrect position during installation may damage the PCB.

Carefully remove the securing supports from the printed control board (PCB) by pressing carefully on the support tabs with long-tipped pliers.

ĺ	Nº	Part
ĺ	1	Extended support part
	2	PCB

Nº

1

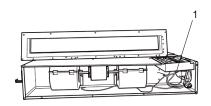
2

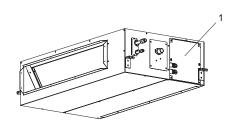
3

4

Set screw

Terminal board

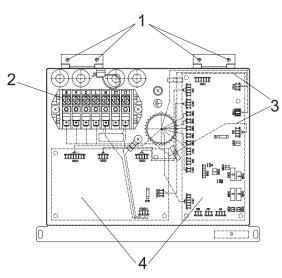

Transformer


PCB

9.6 RPI-(0.6-6.0)FSN4E - Ducted indoor unit

9.6.1 Removal of the electrical box

RPI-(0.6-1.5)FSN4E



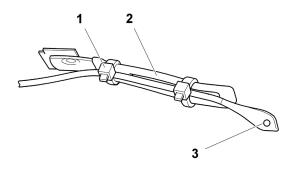
RPI-(2.0-6.0)FSN4E

N°	Part
1	Location of the electrical box cover

RPI-(0.6-1.5)FSN4E

Part

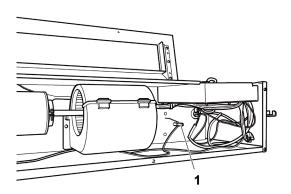
RPI-(2.0-6.01)FSN4E 2 础 3H:


9.6.2 Removal of the inlet and outlet air thermistors

Inlet air thermistor

Disconnect and remove the thermistor. The thermistor is located on the outlet side of the unit.

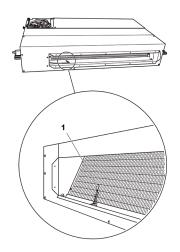
Nº	Part
1	Tie
2	Cable clamp
3	Thermistor



To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.

- Remove the screws securing the rear cover of the unit.
- 2 Disconnect and remove the thermistor.

Nº	Part
1	Location of the air inlet thermistor



Outlet air thermistor

To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.

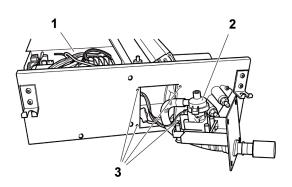
Nº	Part
1	Air outlet thermistor

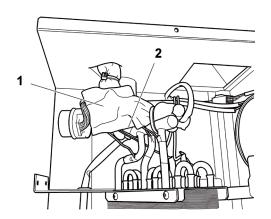
9.6.3 Removal of the thermistors from the liquid and gas pipes

i NOTE

- To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.
- Cover the thermistors with cork tape or pipe insulation, depending on the location. Both materials are factory-supplied. Replace them if damaged during maintenance work.
- 1 Remove the electrical box cover.
- 2 Remove the service cover.

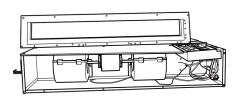
The liquid and gas pipe thermistors are secured to the copper piping by a special clamp.

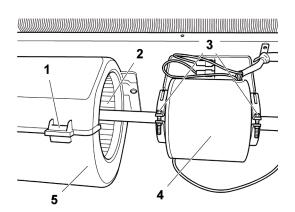

- Liquid pipe thermistor: covered with cork tape.
- Gas pipe thermistor: covered with pipe insulation.


Nº	Part
1	Electrical box
2	Drain pump
3	Screws

- Black connector: liquid thermistor.
- Yellow connector: gas thermistor.

	Nº	Part
l	1	Location of the thermistor
ı	2	Location of the thermistor





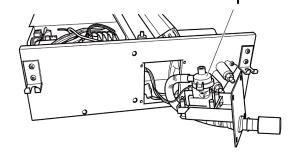
9.6.4 Removal of the fan parts

Fan parts: fan motor, fan casing and duct.

Nº	Part
1	Locks
2	Duct
3	Fixture supports
4	Fan motor
5	Fan casing

- 1 Remove the rear cover as indicated in chapter "9.6.2 Removal of the inlet and outlet air thermistors".
- 2 Remove the tape located in the centre of the casing.
- 3 Press the locks and remove half of the fan casing.
- 4 Remove the fixture support screws and carefully remove the motor together with the fans.
- 5 Loosen the screws securing the fans to the motor shaft.

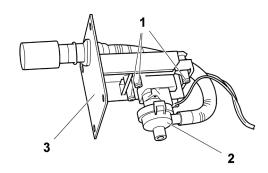
If the fan casing is to be fully removed, remove the screws securing the other half to the fan motor fixture.


9.6.5 Removal of the drain mechanism

To disconnect and remove the drain mechanism, previously see the chapter corresponding to the wiring diagrams in this Manual.

1 Remove the drain pump support screws and remove it.

Nº	Part
1	Drain pump



i NOTE

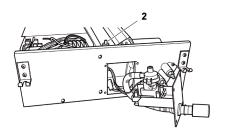
Prior to installing the new pump:

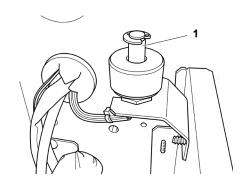
- 1 Remove the electrical box from the unit to connect it to the printed circuit board (PCB) in line with the instructions given in chapter "9.6.1 Removal of the electrical box".
- 2 Seal the drain hose gaskets correctly.

Nº	Part
1	Bolts
2	Drain pump
3	Service cover

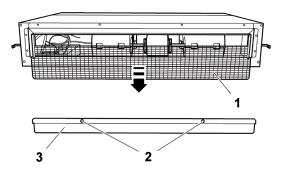
9.6.6 Removal of the float switch

To disconnect and remove the float switch, previously see the chapter corresponding to the wiring diagrams in this Manual.


- 1 Remove the drain pump support screws and remove it.
- 2 Loosen the screws securing the float switch to the support.
- 3 Loosen the resin nut securing the float switch and remove it.

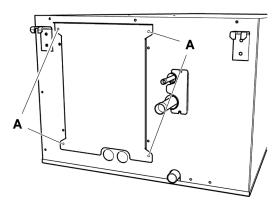

Nº	Part
1	Float switch position

The torque value of the resin nut is 0.3 - 0.4 Nm. If the torque value is higher, the nut will be damaged.


N°	Part
1	Float switch

9.6.7 Removal of the air filter

Nº	Part
1	Air filter
2	Screws
3	Air filter fixture bar

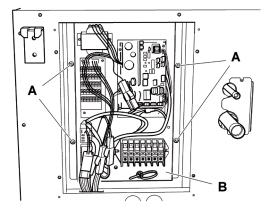


 $[i]_{\mathsf{NOTE}}$

In the following general illustrations are examples for RPI-(8.0/10.0)FSN3E(-f), but they are applicable for RPI-(16.0/20.0)FSN3PE(-f) as well. In the specific cases where there are differences between both units, the illustrations are shown separately for each one.

9.7.1 Removal of the electrical box cover

1 Remove the set screws -A- from the electrical box cover to access the electrical components.

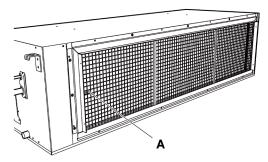

9.7.2 Removal of electrical components

- 1 Remove the electrical box cover as indicated in chapter "9.7.1" Removal of the electrical box cover".
- 2 Separate the connections of all electrical components.
- 3 Remove the set screws -A- and separate the full electrical component support -B-.

⚠ CAUTION

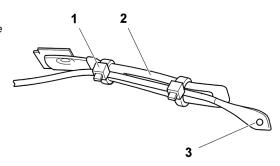
Handle the support carefully to avoid damaging the electrical components.

9.7.3 Removal of the inlet and outlet air thermistors


Inlet air thermistor

1 Remove the air filter as indicated in chapter "9.7.8 Removal of the air filter".

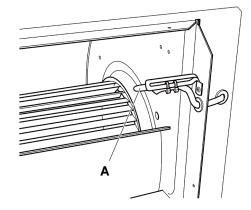
The inlet air thermistor -A- is located on the left-hand side of the air inlet to the unit.

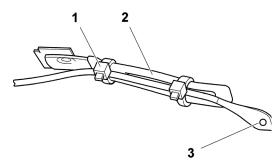

- 2 Remove the electrical box cover as indicated in chapter "9.7.1" Removal of the electrical box cover".
- 3 Disconnect and remove the thermistor (x2 thermistors in RPI-(16.0/20.0)FSN3PE(-f))

To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.

Nº	Part
1	Tie
2	Cable clamp
3	Thermistor

Outlet air thermistor


The outlet air thermistor -B- is located on the right-hand side of the air outlet from the unit.

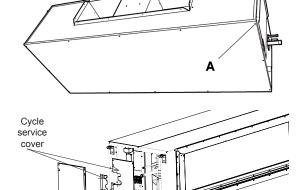

- 1 Remove the electrical box cover as indicated in chapter "9.7.1" Removal of the electrical box cover".
- 2 Disconnect and remove the thermistor (x2 thermistors in RPI-(16.0/20.0)FSN3PE(-f)).

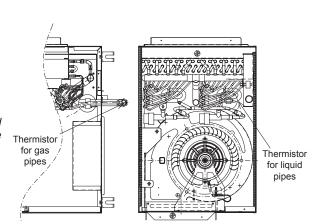
To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.

Nº	Part
1	Tie
2	Cable clamp
3	Thermistor

9.7.4 Removal of the thermistors from the liquid and gas pipes

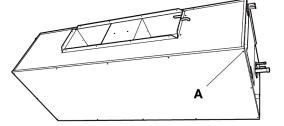
- 1 Remove the appropriate service cover for accessing to the liquid / gas thermistors.
 - a. For (8.0/10.0)HP: Remove all the screws (A) from the lower cover of the unit and remove the cover.
 - b. For (16.0/20.0)HP: Remove the screws from the cycle service cover and remove it.
- 2 Remove the electrical box cover as indicated in chapter "9.7.1 Removal of the electrical box cover".
- 3 Disconnect the thermistor.


- To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.
- Black connector: liquid thermistor.
- · Yellow connector: gas thermistor.



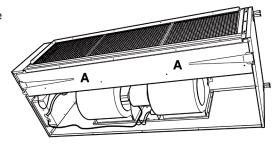
5 Remove the special clamp holding the thermistor to the copper piping and remove it.

When fitting the thermistors, remember that they must be secured correctly by the special clamp and completely covered by the previously removed insulation.

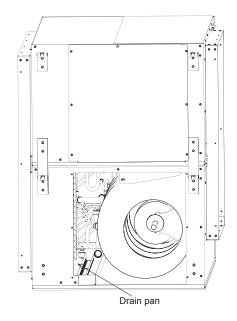


9.7.5 Removal of the drain pan

◆ For RPI-(8.0/10.0)FSN3E(-f)


- 1 Remove all screws -A- from the lower cover of the unit and separate it.
- 2 Release the unit drainage connection.

3 Remove the screws -A- securing the drain pan and remove it.



When fitting, seal the drain hose gasket correctly.

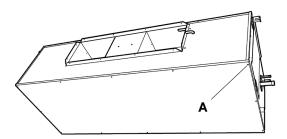
◆ For RPI-(16.0/20.0)FSN3PE(-f)

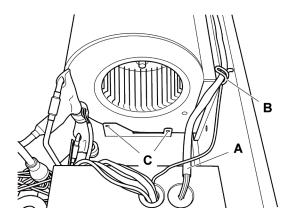
1 The servicing of these units can be carried out either by the fan motor side cover or by the cycle service cover. Access to the drain pan through any of these covers and clean it in order to guarantee a correct operation.

9.7.6 Fan removal

◆ For RPI-(8.0/10.0)FSN3E(-f)

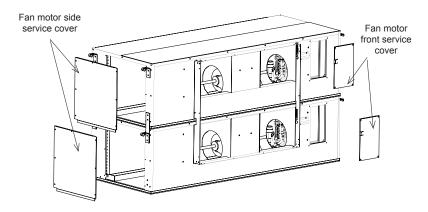
- 1 Remove all screws -A- from the lower cover of the unit and separate it.
- 2 Remove the electrical box cover as indicated in chapter "9.7.1 Removal of the electrical box cover".
- 3 Disconnect the fan motor.



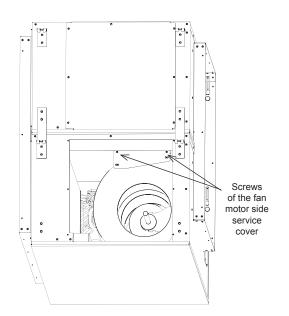

To disconnect and remove the fan motor, previously see the chapter corresponding to the wiring diagrams in this Manual.

- 4 Remove the drain pan as indicated in chapter "9.7.5 *Removal of the drain pan*".
- 5 Remove the wiring A- from the electrical box and release it from the support -B-.
- 6 Remove the screws -C- on both sides of the fan.

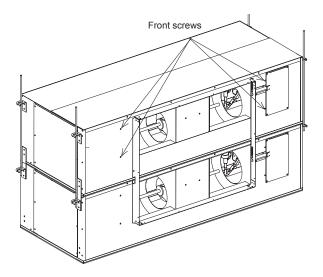
- Make sure the fan can be removed correctly, without the risk of injuring anyone in the surrounding area.
- The fan is heavy. Request the assistance of two operators to hold the fan while it is being removed.



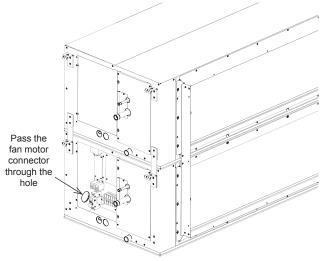
♦ For RPI-(16.0/20.0)FSN3PE



The following procedure applies to both upper and lower fan motor groups.

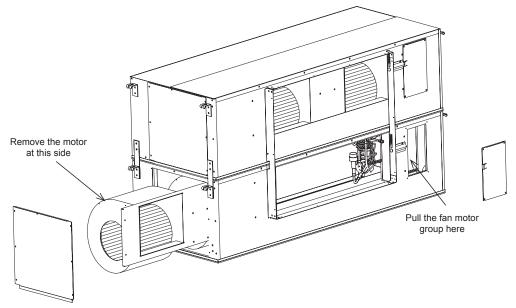

1 Unscrew and remove the 7 screws of the fan motor side service cover and the 4 screws of the fan motor front service cover.

2 After removing the service covers, remove the screws which fix the fan motor to its supports (4 screws at the fan motor side service cover and 2 screws at the fan motor service cover).


3 Remove the 4 front screws which fix the fan motor group to the front side of the unit.

4 Once the fan motor group has been released, disconnect the fan motor connector from the electrical box and pass it through the electrical box hole.

A CAUTION


Loosen the clamp around the fan motor connector cable to ease the release of fan motor group.

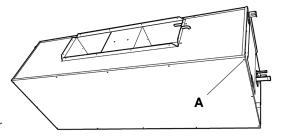
5 Remove the fan motor group. One person shall push the fan motor group from the position of the front service cover, while a second person is pulling from the position of the fan motor side service cover.

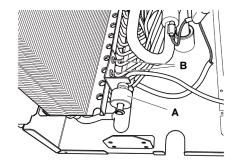
The fan motor group has an approximate weight of 25 kg, and therefore removal operation shall be carried out by two persons at least.

9.7.7 Removal of the float switch

♦ For RPI-(8.0/10.0)FSN3E(-f)

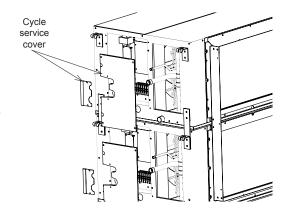
- 1 Remove all screws -A- from the lower cover of the unit and separate it.
- 2 Remove the drain pan as indicated in chapter "9.7.5 Removal of the drain pan".

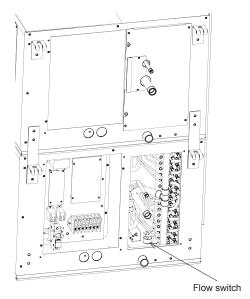



To disconnect and remove the float switch, previously see the chapter corresponding to the wiring diagrams in this Manual.

3 Loosen the resin nut securing the float switch -A- and remove it. If the switch support is to be removed, remove screws -B-.

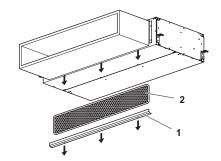
The torque value of the resin nut is 0.3 - 0.4 Nm. If the torque value is higher, the nut will be damaged.




♦ For RPI-(16.0/20.0)FSN3PE(-f)

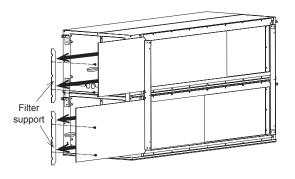
- 1 Remove the cycle service cover by unscrewing its fixing screws
- 2 Loosen the resin nut securing the float switch and remove it. If the switch support is to be removed, remove screws.

The torque value of the resin nut is 0.3 - 0.4 Nm. If the torque value is higher, the nut will be damaged.



9.7.8 Removal of the air filter

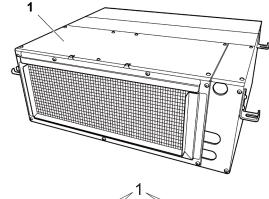
◆ For RPI-(8.0/10.0)FSN3E(-f)

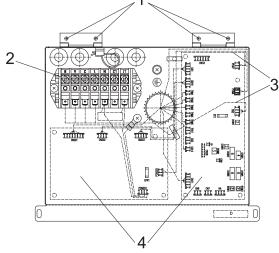

Remove the four set screws from the support fixture -1- of the air filter -2- and separate both parts.

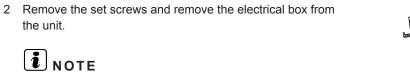
◆ For RPI-(16.0/20.0)FSN3PE(-f)

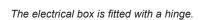
Filter maintenance can be performed from right or left side of the unit.

Remove filter support (x2 screws / each support) and pull out the filter from the handle. In those installations where the servicing space is narrow, the filter could be bent (in three pieces) when pulling it out.

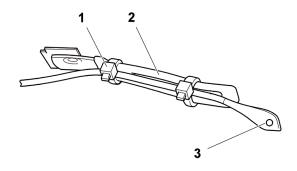

9.8 RPIM-(0.6-1.5)FSN4E - Ducted indoor unit


9.8.1 Removal of the electrical box

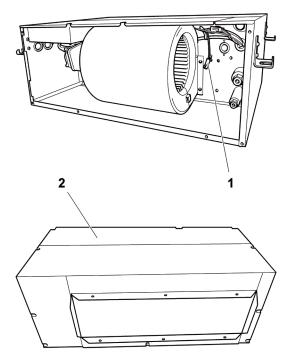

1 Remove the electrical box cover to access the electrical components.


Nº	Part
1	Location of the electrical box cover


Nº	Part
1	Set screws
2	Terminal board
3	Transformer
4	PCB


9.8.2 Removal of the inlet and outlet air thermistors

Inlet air thermistor


To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.

Nº	Part
1	Tie
2	Cable clamp
3	Thermistor

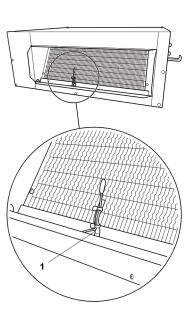
- 1 Remove the screws securing the rear cover of the unit.
- 2 Disconnect and remove the thermistor.

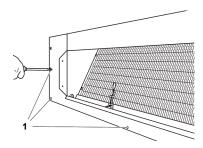
Nº	Part
1	Location of the air inlet thermistor
2	Rear cover

9.8.3 Outlet air thermistor

- The thermistor is located on the outlet side of the unit.
- To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.
- Disconnect and remove the thermistor.

Nº	Part	
1	Outlet thermistor	

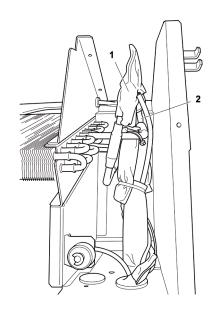



- The thermistor is located on the outlet side of the unit.
- To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.
- 2 Disconnect and remove the thermistor. Removal of the thermistors from the liquid and gas pipes.

Nº	Part
1	Screws

- To disconnect and remove the appropriate thermistor, previously see the chapter corresponding to the wiring diagrams in this Manual.
- Cover the thermistors with cork tape or pipe insulation, depending on the location. Both materials are factory-supplied. Replace them if damaged during maintenance work.

- 3 Remove the electrical box cover.
- 4 Remove the service cover.

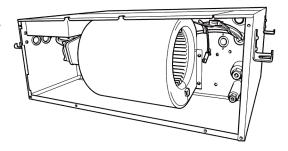

The liquid and gas pipe thermistors are secured to the copper piping by a special clamp.

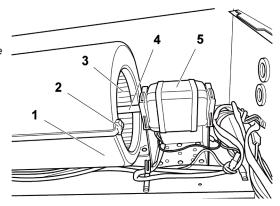
- Liquid pipe thermistor: covered with cork tape.
- Gas pipe thermistor: covered with pipe insulation.

Nº	Part
1	Location of the thermistor

- Black connector: liquid thermistor.
- Yellow connector: gas thermistor.

9.8.4 Removal of the fan parts


Fan parts: fan motor, fan casing and duct.


- 1 Remove the rear cover as indicated in chapter "9.8.2 Removal of the inlet and outlet air thermistors".
- 2 Remove the tape located in the centre of the casing.
- 3 Press the locks and remove half of the fan casing.
- 4 Remove the fixture support screws and carefully remove the motor together with the fans.
- 5 Loosen the screws securing the fans to the motor shaft.

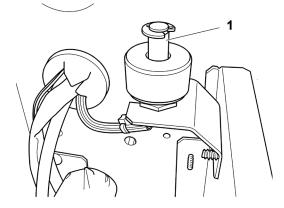
If the fan casing is to be fully removed, remove the screws securing the other half to the fan motor fixture.

Nº	Part
1	Fan casing
2	Lock
3	Fan duct
4	Shaft
5	Fan motor

9.8.5 Removal of the float switch

To disconnect and remove the float switch, previously see the chapter corresponding to the wiring diagrams in this Manual.

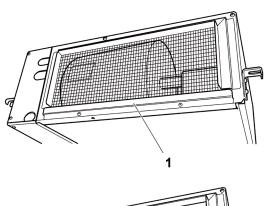
- 1 Remove the necessary covers to access the float switch.
- 2 Loosen the screws securing the float switch to the support.

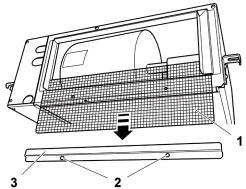

The torque value of the resin nut is 0.3 - 0.4 Nm. If the torque value is higher, the nut will be damaged.

Nº	Part
1	Float switch position

3 Loosen the resin nut securing the float switch and remove it.

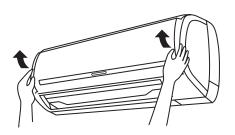
N°	Part
1	Float switch

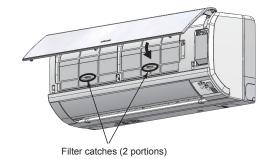

9.8.6 Removal of the air filter


1 Remove the air filter fixture support screws and remove the air filter.

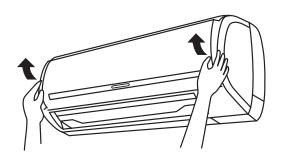
Nº	Part
1	Air filter fixture bar

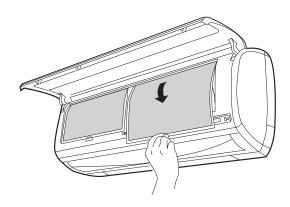
Nº	Part
1	Air filter
2	Screws
3	Air filter fixture bar


9


9.9 RPK-FSN(H)3M - Wall mounted

9.9.1 Removal of the air filter

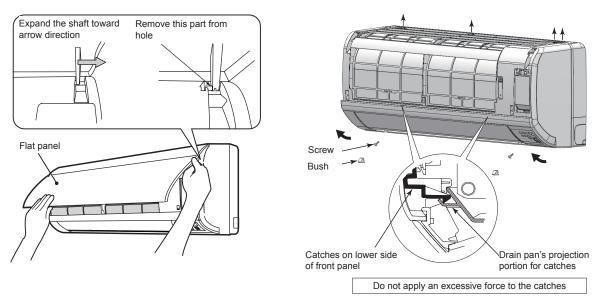

◆ For RPK-(0.6-1.5)FSN(H)3M


1 Open the flat panel. Hold the both sides of flat panel and pull it up

♦ For for RPK-(2.0-4.0)FSN(H)3M

9.9.2 Removal of the front panel

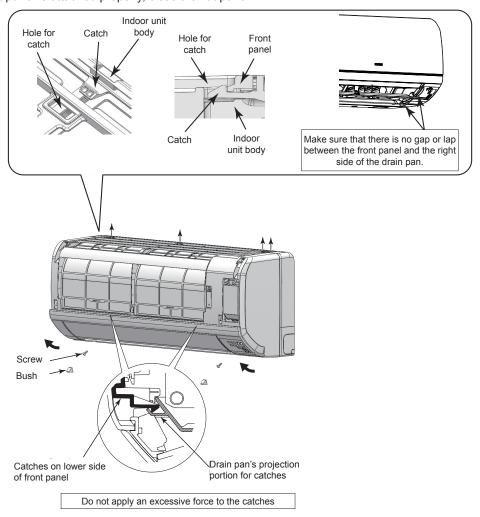
△ CAUTION


- Cover completely the front panel with a sheet of plastic to protect it during installation work.
- The shaft is coated with a lubricant. If it gets in eyes or contacts with skin, flash them out with water immediately. Also consult a doctor if necessary. Wash your hands thoroughly after handling the shaft.

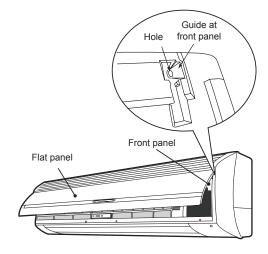
◆ For RPK-(0.6-1.5)FSN(H)3M

- 1 Remove the air filter according to the "9.9.1 Removal of the air filter" chapter.
- 2 Open the flat panel fully and slightly extend the right arm shaft outward. After the shaft is removed from the front panel, pull the flat panel frontward with the right arm shaft slightly extended outward and then remove the flat panel.
- 3 Remove 2 bushes and then 2 screws. Pull the lower side of the front panel forward to release the catches. Then remove the front panel carefully so that it does not touch the horizontal louver attached to the air outlet.
- 4 Slightly lift the front panel up to release the catches (four portions) on the upper side of the unit. Then pull the front panel forward to remove it

When releasing the catches, snap sound is heard. This is the sound made when the catches are released and so there are no safety concerns.


5 When mounting the front panel, firstly attach the air outlet side of the panel to the unit and then put the catches (four portions) on the upper side of the unit into the holes on the panel. Push the lower side of the panel to fasten the catches.

Make sure that there is no gap nor lap between the front panel and the right side of the drain pan. If there is a gap there, an air leakage and dew condensation may occur and the dew may drop on the front panel.


- 6 Tighten 2 screws and attach 2 bushes. And then mount the air filter.
- 7 Insert the arm shafts on both sides of the flat panel into the holes on the unit body, along the guide of the front panel.

 After the flat panel is attached properly, close the flat panel.

Attaching flat panel.

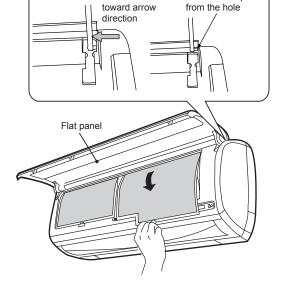
Insert completely the left and right arm shafts of flat panel into the holes along the guide at the front panel. After the flat panel is attached completely, insert the catches for air filter to fix it.

◆ For RPK-(2.0-4.0)FSN(H)3M

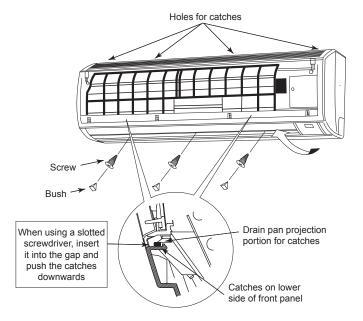
Remove the air filter according to the "9.9.1 Removal of the air filter" chapter.

Remove this part

- 2 Open the flat panel fully and push the right arm shaft inward. After the shaft is removed from the front panel, pull the flat panel frontward with the right arm shaft slightly pushed inward and then remove the flat panel.
- 3 Remove 3 bushes and then 3 screws. Pull the lower side of the front panel (2 portions) forward to release the catches. Use a slotted screwdriver when the catches are difficult to release.

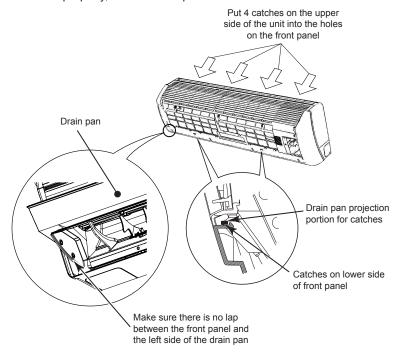


Take special care not to be injured by the heat exchanger fins.

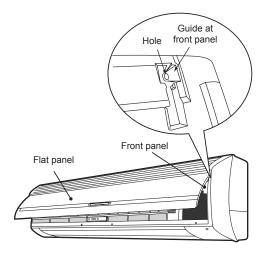

4 Remove the front panel carefully so that it does not touch the horizontal louver attached to the air outlet. Slightly lift the front panel up to release the catches (4 portions) on the upper side of the unit. Then pull the front panel forward to remove it.

When releasing the catches, snap sound is heard. This is the sound made when the catches are released and so there are no safety concerns.

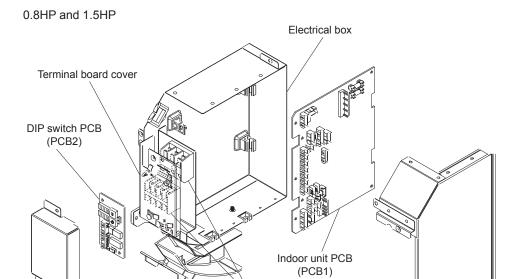
Push the shaft



5 When mounting the front panel, be careful that it does not touch the horizontal louver. Paying attention to both sides of the panel, put the catches (four portions) on the upper side of the unit into the holes on the panel. Then push the lower side of the panel (2 portions) to fasten the catches.


Make sure that there is no gap nor lap between the front panel and the left side of the drain pan. If there is a gap there, an air leakage and dew condensation may occur and the dew may drop on the front panel.

- 6 Tighten 3 screws and attach 3 bushes. And then mount the air filter.
- 7 Insert completely the arm shafts of left and right side of the panel into the holes along the guide of the front panel. After the flat panel is attached properly, close the flat panel.


Attaching flat panel

Insert completely the left and right arm shafts of flat panel into the holes along the guide at the front panel. After the flat panel is attached completely, insert the catches for air filter to fix.

9.9.3 Electrical Box Structure

The electrical box for a wall type indoor unit is composed of the following components.

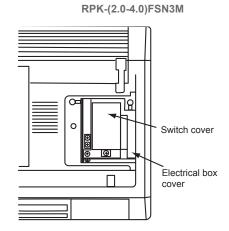
Terminal board

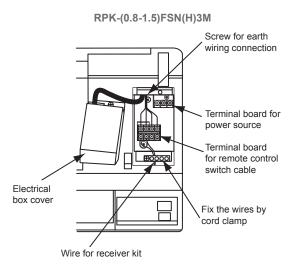

Electrical box cover

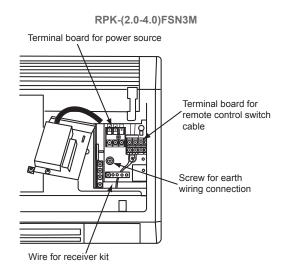
PCB for receiver (with indicator)

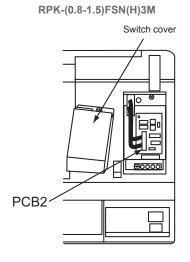
2.0HP to 4.0HP

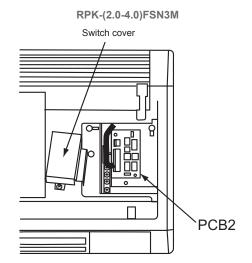
Receiver cover


Switch cover


9.9.4 Remove the electrical box cover


Remove the flat panel as indicated in section "9.9.2 Removal of the front panel". The electrical box cover can be opened without removing the front panel.

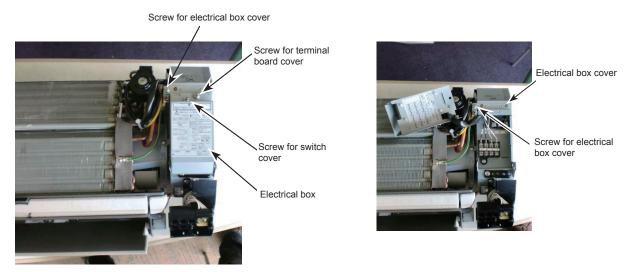

Open the electrical box cover by unscrewing the screw.



9.9.5 Remove the switch cover

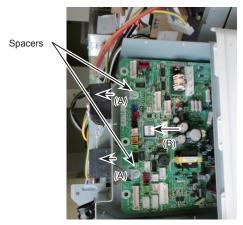
Remove the flat panel as indicated in section "9.9.2 Removal of the front panel". The switch cover can be opened without removing the front panel.

9.9.6 Replacing PCB1 for Control


◆ For RPK-(0.6-1.5)FSN(H)3M

1 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.

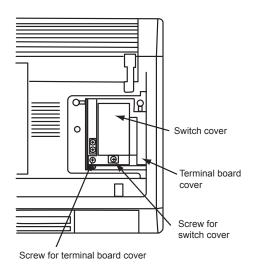
If there is enough service space to the right side of the electrical box, PCB1 can be replaced without removing the electrical box.

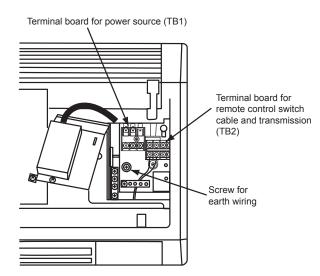

- 2 Remove 1 screw fixing the terminal board cover to remove it.
- 3 Remove 1 screw fixing the electrical box cover located to the right side of the electrical box. Then remove the electrical box cover.
- 4 Remove the wirings and connectors (on the PCB1) for the freeze protection thermistor, gas pipe thermistor, inlet air thermistor, outlet air thermistor, transmission, remote control switch, power source, external input/output, auto-louver, PCB for receiver (with indicator), fan motor and expansion valve coil.

- 5 Remove 2 spacers in the direction of the arrow (A) and also remove PCB1 in the direction of the arrow (B).
- 6 After the replacement, attach them in the reverse procedure.

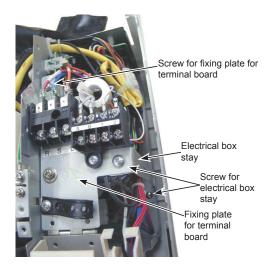


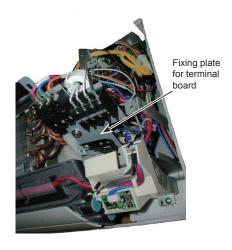
If the unit with the expansion valve kit is used, regard "expansion valve coil" as "expansion valve relay cord."

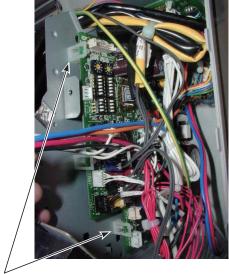



◆ For RPK-(2.0-4.0)FSN(H)3M

- 1 Remove the front panel according to the "9.9.2" Removal of the front panel" chapter.
- 2 Remove 1 screw (A) fixing the terminal board cover to remove it. Then, remove 2 screws (C) fixing the electrical box cover to remove it.

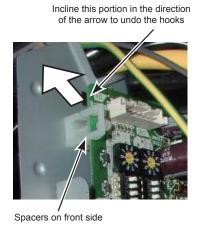


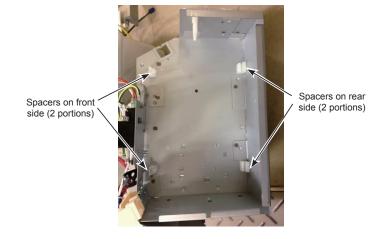



- 3 Remove 2 screws for the electrical box stay to remove it.
- Remove 1 screw for the fixing plate for the terminal board and tilt the board frontward.

5 Remove the connectors (on the PCB1) for the freeze protection thermistor, gas pipe thermistor, inlet air thermistor, outlet air thermistor, transmission, remote control switch, power source, external input/output, auto-louver, PCB for indication, fan motor, PCB for receiver and expansion valve coil.

6 Undo the hook of the spacers (2 portions) on the front side. Then remove the PCB1 from the electrical box.

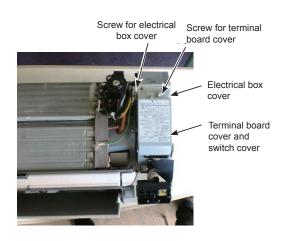


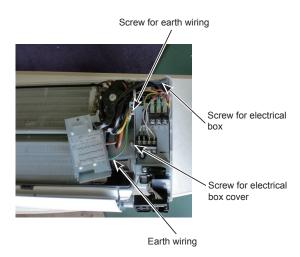

Specers on front side (2 portions)

- 7 Insert the new PCB1 for replacement into the grooves of two (2) spacers on the rear side. Then attach the PCB1 to the hooks on the front side to fix it.
- 8 Connect the connectors to the PCB1 and attach the fixing plate for the terminal board, the electrical box stay, the electrical box cover and the terminal board cover in the reverse procedure.

- Make sure that the wirings will not get caught and that all the connectors will be connected correctly.
- If the unit with the expansion valve kit is used, regard "expansion valve coil" as "expansion valve relay cord."

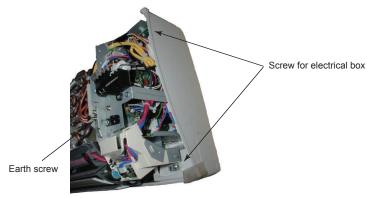
9.9.7 Removing Electrical Box


◆ For RPK-(0.6-1.5)FSN(H)3M


- Remove the front panel according to the "9.9.2 Removal of the front panel" chapter
- 2 Remove 1 screw fixing the terminal board cover to remove it. Also remove 1 screw fixing the electrical box cover to
- 3 Then, remove the power source wiring, the transmission wiring and the wiring for the remote control switch from the terminal board.
- 4 Remove the connectors (on the PCB1) for the freeze protection thermistor, gas pipe thermistor, inlet air thermistor, outlet thermistor, auto-louver, fan motor and expansion valve coil, and the earth wire.

- 5 Remove the wirings for the freeze protection thermistor, gas pipe thermistor, inlet air thermistor and the expansion valve coil from the wiring outlet at the upper part. Also remove the wirings for the outlet air thermistor, auto-louver and fan motor from the wiring outlet at the lower part.
- 6 Remove 2 screws fixing the electrical box to dismount it from the indoor unit body.

If the unit with the expansion valve kit is used, regard "expansion valve coil" as "expansion valve relay cord."



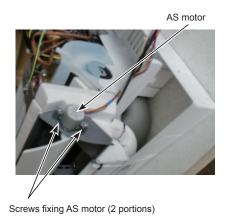
For RPK-(2.0-4.0)FSN(H)3M

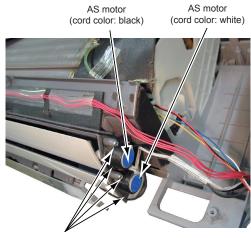
- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter
- 2 Remove the terminal board cover and the electrical box cover according to "9.1.5 Removing Printed Circuit Board (PCB1)" chapter
- 3 Then, remove the power source wiring, the transmission wiring and the wiring for the remote control switch from the terminal board.
- 4 Remove the connectors (on the PCB1) for the freeze protection thermistor, gas pipe thermistor, inlet air thermistor, outlet air thermistor, auto-louver, PCB for indication, PCB for receiver, fan motor and expansion valve coil.
- 5 Remove the wirings for the freeze protection thermistor, gas pipe thermistor, inlet air thermistor, fan motor and expansion valve coil from the wiring outlet at the upper part. Also remove the wirings for the outlet air thermistor, autolouver, PCB for indication and PCB for receiver from the wiring outlet at the lower part.
- 6 Remove 2 screws fixing the electrical box to dismount it from the indoor unit body.
- 7 Remove the earth screw to disconnect earth wire between the heat exchanger and the electrical box.
- 8 Before remounting the electrical box, make sure to connect the connectors mentioned above. Then mount the electrical box in the reverse procedure.

If the unit with the expansion valve kit is used, regard "expansion valve coil" as "expansion valve relay cord."

9.9.8 Removing AS Motor

◆ For RPK-(0.6-1.5)FSN(H)3M


- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 2 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 3 Remove 2 screws fixing the AS motor to remove it. Then pull the AS motor outward and remove it from the shaft of the horizontal louver.
- 4 When mounting the AS motor, insert the shaft of the AS motor into the D-cut portion of the horizontal louver. Then mount the AS motor in the reverse procedure.


♦ For RPK-(2.0-4.0)FSN(H)3M

- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 2 Remove the electrical box from the cabinet according to the "9.9.7 Removing Electrical Box" chapter.
- 3 Remove 4 screws fixing 2 AS motors to remove them. Then pull the AS motors outward and remove them from the shaft of the horizontal louver.
- 4 When mounting the AS motors, insert the shafts of the AS motors into the D-cut portions of the horizontal louver. Then mount the AS motors in the reverse procedure.

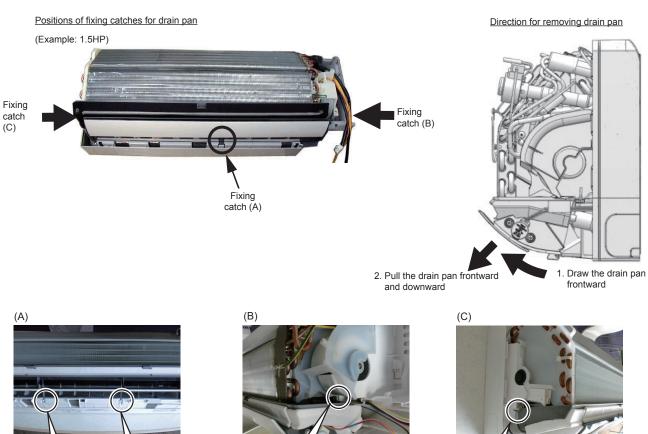
The AS motor connected to the black cord is for the upper horizontal louver and the AS motor connected to the white cord is for the lower horizontal louver. Take care not to mount a wrong AS motor when mounting them.

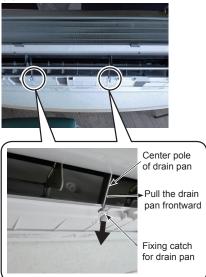
Screws fixing AS motor (4 portions)

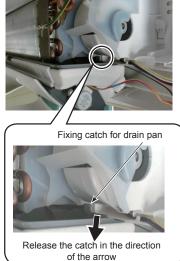
9.9.9 Removing Drain Pan

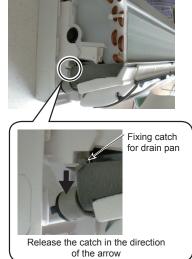
Take care when removing the drain pan, as water may have collected in the drain pan.

◆ For RPK-(0.6-1.5)FSN(H)3M

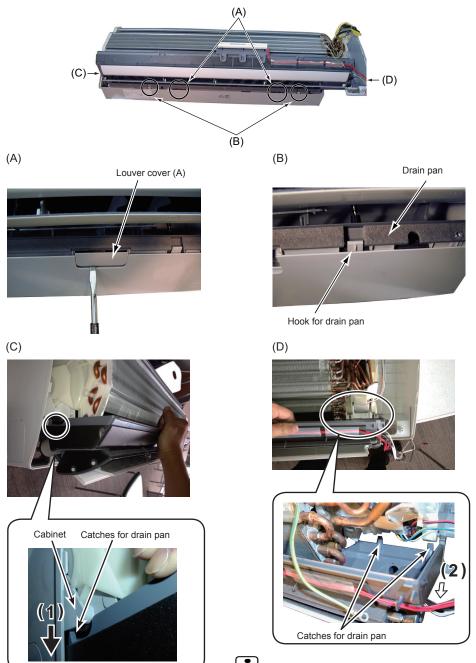

Do not remove the horizontal louver. Otherwise, some component may be damaged.


- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 2 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 3 Release the catches fixing the drain pan.
 - 1.0HP (3 portions): (A)×1, (B)×1 and (C)×1
 - 1.5HP (4 portions): (A)×2, (B)×1 and (C)×1 Then draw the drain pan in the direction of the arrow in the figure below to remove it.


$[i]_{\mathsf{NOTE}}$


Before removing the drain pan, check that the drain hose is not fixed. If the drain hose is firmly fixed, the drain pan cannot be removed.

4 When mounting the drain pan, mount it in the reverse procedure. Make sure that the catches fixing the drain pan, mentioned in the procedure (3), are fastened.


◆ For RPK-(2.0-4.0)FSN(H)3M

- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 2 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 3 Remove the louver cover (A) (2 portions) attached to the lower part of the cabinet with a slotted screwdriver.
- 4 Remove 2 hooks (B) for the drain pan.

Before removing the drain pan, check that the drain hose is not fixed. If the drain hose is firmly fixed, the drain pan cannot be removed.

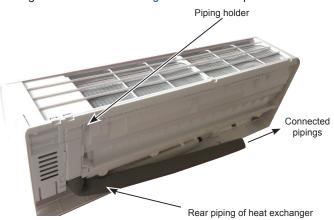
- 5 Remove 3 catches at (C) and (D) in the following procedure. Apply a force in the direction of the arrow (1) and release 1 catch (C) fixing the drain pan to the cabinet. Then apply a force in the direction of the arrow (2) and release 2 catches (D). Remove the drain pan.
- 6 When mounting the drain pan, mount it in the reverse procedure.

The catches are hidden from view by the fan motor. The figure above shows an example with the fan motor removed.

9.9.10 Removing Heat Exchanger

⚠ DANGER

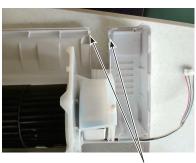
TURN OFF all power source switches.

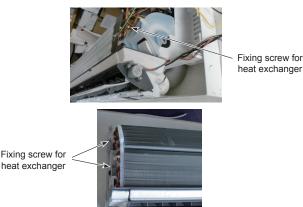


∠ ! \[\!\ CAUTION \]

- Recover the refrigerant from the unit before the work. After all the refrigerant is recovered, turn OFF all power source switches.
- Make sure that the unit will not be damaged. If having difficulty in performing the work alone, the work shall be taken by two people.
- Take special care not to be injured by the heat exchanger fins.

For RPK-(0.6-1.5)FSN(H)3M


- Remove the power source wiring, the transmission wiring and the wiring for the remote control switch.
- 2 Push the portion indicated by "PUSH" on the underside of the unit to release the catches at the lower part of the unit.
- 3 Remove the flare nuts attached to the rear piping of the heat exchanger to disconnect the pipings. Then lift the indoor unit up and draw it frontward to remove it.
- 4 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 5 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 6 Remove the drain pan according to the "9.9.9 Removing Drain Pan" chapter.

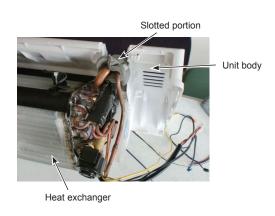

Rear side of indoor unit

- 7 Release 2 catches on the inside of the piping holder at the rear side of the indoor unit and remove the piping holder.
- 8 Remove 1 screw fixing the right side of the heat exchanger. Then remove 2 screws fixing the left side of the heat exchanger.

Front Side of Indoor Unit (The figures above show the examples with the piping for heat exchanger removed.)

Catches for piping holder

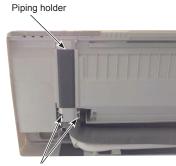
- 9 Tilt up the piping holder at the rear side approximately 10 degrees in the direction of the arrow (A) as shown in the figure below.
- 10 Pull out the heat exchanger with the rear pipings obliquely upward in the direction of the arrow (B) to remove it from the slotted portion.

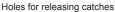



Make sure that the heat exchanger and the unit body will not be damaged when removing the heat exchanger.

11 When mounting the heat exchanger, mount it in the reverse procedure.

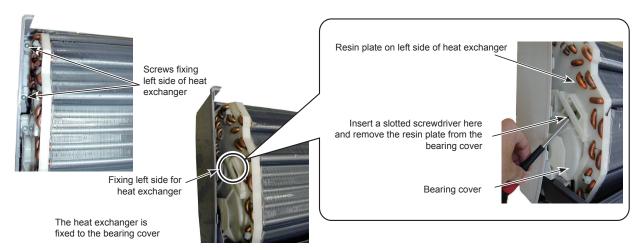
Before mounting the heat exchanger, check to ensure that there is no clearance between the heat exchanger and the motor clamp in order to prevent dew drops.




♦ For RPK-(2.0-4.0)FSN(H)3M

- 1 Remove the power source wiring, the transmission wiring and the wiring for the remote control switch.
- 2 Push the portion indicated by "PUSH" on the underside of the unit to release the catches at the lower part of the unit.
- 3 Remove the flare nuts attached to the rear pipings of the heat exchanger to disconnect the piping. Then lift the indoor unit up and draw it frontward to remove it.
- 4 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 5 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 6 Remove the drain pan according to the "9.9.9 Removing Drain Pan" chapter.
- 7 Remove 3 screws fixing the support stay attached to the rear side of the indoor unit and remove it.

- 8 Insert a slotted screwdriver into the holes (2 portions) to release the catches for the piping holder as shown in the figure below.
- 9 Release 2 catches for fixing the piping on the inside of the piping holder attached to the rear side of the indoor unit. Then remove the piping holder.

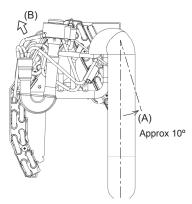


Catches for fixing piping

- 10 Remove 2 screws fixing the left side of the heat exchanger and undo 1 hook for the heat exchanger. Then remove butyl sheet covering piping between the heat exchanger and the electrical box.
- 11 Remove 1 screw fixing the right side of the heat exchanger.
- 12 Release the catches for the heat exchanger fixed to the bearing cover with a slotted screwdriver.

- 13 Tilt up the piping holder at the rear side approximately 10 degrees in the direction of the arrow (A) as shown in the figure below.
- 14 Pull out the heat exchanger with the rear pipings obliquely upward in the direction of the arrow (B) to remove it from the slotted portion.

Make sure that the heat exchanger and the unit body will not be damaged when removing the heat exchanger.


15 When mounting the heat exchanger, mount it in the reverse procedure.

Before mounting the heat exchanger, check to ensure that there is no clearance between the heat exchanger and the motor clamp in order to prevent dew drops.

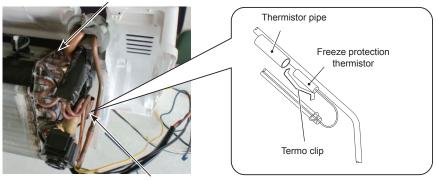
Fixing screw for heat exchanger

9.9.11 Removing Thermistors for Freeze Protection, Gas Pipe, Outlet Air and Inlet Air

◆ For RPK-(0.6-1.5)FSN(H)3M

- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 2 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 3 Remove the plastic band (A) clamping each thermistor.

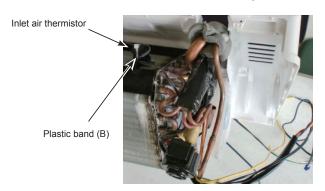
Plastic band (A)


4 Removing Freeze Protection Thermistor

- a. The freeze protection thermistor is fixed by thermistor pipe with a thermo clip. Remove the thermistor from the thermo clip.
- b. When attaching the freeze protection thermistor, attach it in the reverse procedure. Insert the thermistor into the thermistor pipe and fix it with the thermo clip.
- c. After attaching the thermistor, clamp the wirings for the expansion valve, freeze protection thermistor, gas pipe thermistor and inlet air thermistor with one (1) plastic band.

5 Removing Gas Pipe Thermistor

- a. The gas pipe thermistor is fixed by the thermistor holder. Remove the thermistor holder from the thermistor. Then, the gas pipe thermistor can be removed.
- b. When attaching the gas pipe thermistor, attach it in the reverse procedure. Get the thermistor firmly attached to the inside of the piping with the thermistor holder.
- c. After attaching the thermistor, clamp the wirings for the expansion valve, freeze protection thermistor, gas pipe thermistor and inlet air thermistor with one (1) plastic band.


Gas pipe thermistor (left side of gas pipe)

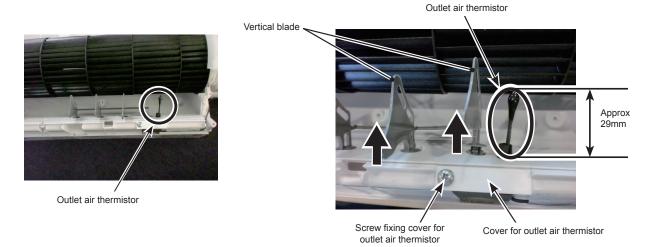
Freeze protection thermistor

6 Removing Inlet Air Thermistor

- a. The inlet air thermistor is clamped with 1 plastic band (B) to the resin component for fixing the thermistor inserted into the heat exchanger fins. Remove the plastic band to remove the thermistor.
- b. When attaching the inlet air thermistor, attach it to the resin component with the plastic band in the reverse procedure. Take care during the work so that the wiring for the thermistor will not come into contact with metal edges of fins or side plates of the heat exchanger.
- c. After attaching the thermistor, clamp the wiring for the expansion valve, freeze protection thermistor, gas pipe thermistor and inlet air thermistor with 1 plastic band.

Fix the inlet air thermistor with the plastic band so Plastic band (B) that the thermistor wire will not be loosened

Place the wirings for the thermistors (for inlet air, gas pipe and freeze protection), and the expansion valve coil into the electrical box from the wiring outlet at the

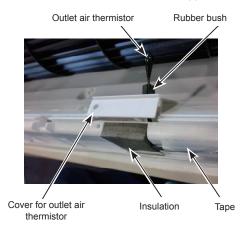

(The wiring for the expansion valve coil is not included when using the unit without expansion valve)

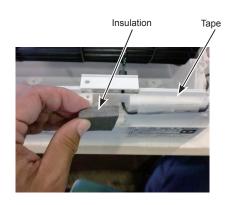
Clamp the wirings for the thermistors (for inlet air, gas pipe and freeze protection), and the expansion valve coil with the plastic band.

(The wiring for the expansion valve coil is not included when using the unit without expansion valve)

7 Removing Outlet Air Thermistor

- a. Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- b. Lift the front side of the vertical blade up in the direction of the arrow to remove it.
- c. Remove 1 screw fixing the outlet air thermistor cover to remove the cover.



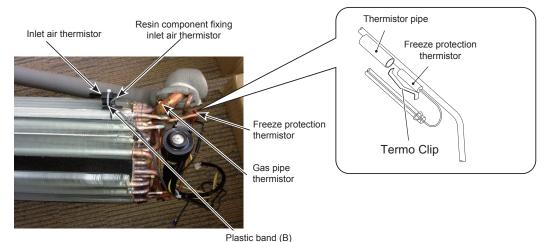

- a. After removing the insulation, pull out the rubber bush to remove the outlet air thermistor.
- b. Remove the tape fixing the thermistor to remove the thermistor.

c. When attaching the outlet air thermistor, attach it in the reverse procedure.

- Take care during the work so that the wiring for the thermistor will not get caught in the cover.
- Make sure that it is 29mm from the upper surface of the thermistor cover to the top of the thermistor.

For RPK-(2.0-4.0)FSN(H)3M

- 1 Remove the front panel according to the "9.9.2 Removal of the front panel" chapter.
- 2 Remove the electrical box according to the "9.9.7 Removing Electrical Box" chapter.
- 3 Remove the heat exchanger according to the "9.9.10 Removing Heat Exchanger" chapter.
- 4 Remove the plastic band (A) clamping each thermistor.


5 Removing Freeze Protection Thermistor

- a. The freeze protection thermistor is fixed to the inside of the thermistor pipe brazed to the gas pipe by the thermo clip. Remove the thermistor from the thermo clip.
- b. When attaching the freeze protection thermistor, attach it in the reverse procedure. Insert the thermistor into the thermistor pipe and fix it with the thermo clip.
- c. After attaching the thermistor, clamp the wiring for the expansion valve, freeze protection thermistor, gas pipe thermistor and inlet air thermistor with 1 plastic band.

6 Removing Gas Pipe Thermistor

- a. The gas pipe thermistor is fixed to the inside of the thermistor pipe brazed to the gas pipe by the thermistor holder. Remove the thermistor holder from the thermistor. Then, the gas pipe thermistor can be removed.
- b. When attaching the gas pipe thermistor, attach it in the reverse procedure. Get the thermistor firmly attached to the inside of the piping with the thermistor holder.

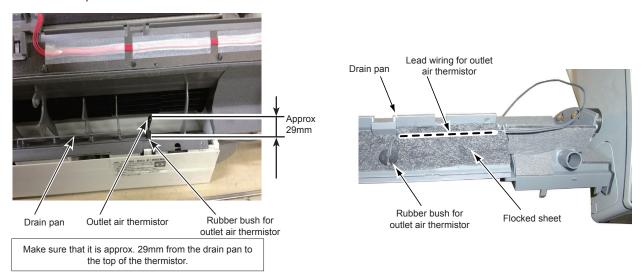
c. After attaching the thermistor, clamp the wiring for the expansion valve, freeze protection thermistor, gas pipe thermistor and inlet air thermistor with 1 plastic band.

7 Removing Inlet Air Thermistor

- a. The inlet air thermistor is clamped with one (1) plastic band (B) to the resin component for fixing the thermistor inserted into the sub heat exchanger fins. Remove the plastic band to remove the thermistor.
- b. When attaching the inlet air thermistor, attach it to the resin component with the plastic band in the reverse procedure. Take care during the work so that the wiring for the thermistor will not come into contact with metal edges of fins or side plates of the heat exchanger.
- c. After attaching the thermistor, clamp the wiring for the expansion valve, freeze protection thermistor, gas pipe thermistor and suction air thermistor with one (1) plastic band.

Place the wiring for the thermistors (for inlet air, gas pipe and freeze protection), and the expansion valve coil into the electrical box from the wiring outlet at the upper side. (The wiring for the expansion valve coil is not included when using the unit without

expansion valve)


Fix the inlet air thermistor with the plastic band so that the thermistor wire will not be loosened.

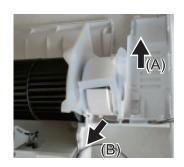
Clamp the wirings for the thermistors (for inlet air, gas pipe and freeze protection), and the expansion valve coil with the plastic band.

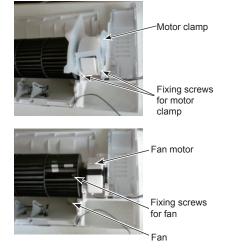
(The wiring for the expansion valve coil is not included when using the unit without expansion valve)

8 Removing Outlet Air Thermistor

- a. Remove the drain pan according to the item "9.9.9 Removing Drain Pan".
- b. Remove the rubber bush and the flocked sheet fixing the outlet air thermistor from the back side of the drain pan. Then pull out the rubber bush from the drain pan.
- c. When attaching the outlet air thermistor, attach the rubber bush and fix the thermistor with the flocked sheet in the reverse procedure.

9.9.12 Removing Fan and Fan Motor

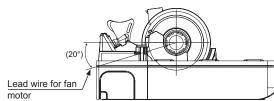



M DANGER

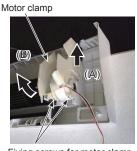
TURN OFF all power source switches.

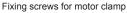
For RPK-(0.6-1.5)FSN(H)3M

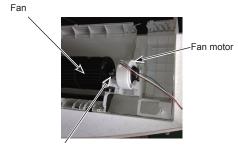
- Remove the heat exchanger according to the "9.9.10 Removing Heat Exchanger" chapter.
- 2 Remove 2 screws fixing the motor clamp to remove it. As lifting up the motor clamp in the direction of the arrow (A), pull it out in the direction of the arrow (B).
- Then Loosen 1 screw fixing the fan and the motor shaft.



- Hold the fan with hands and lift the bearing side up slightly. Then pull out the fan in the direction of the arrow to remove the fan and the motor as shown in the figure below.
- When mounting the fan motor and fan, mount them in the reverse procedure. The fan shall be mounted 4mm away from the unit body.


6 The lead wire for the fan motor shall be pulled out as shown in the figure below.



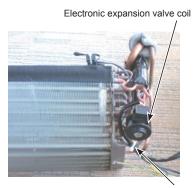


◆ For RPK-(2.0-4.0)FSN(H)3M

- 1 Remove the heat exchanger according to the "9.9.10 Removing Heat Exchanger" chapter.
- 2 Remove 2 screws fixing the motor clamp. As lifting up the motor clamp in the direction of the arrow (A), pull it out in the direction of the arrow (B).
- 3 Then Loosen 1 screw fixing the fan and the motor shaft.

Fixing screw for fan

- 4 Remove 1 screw fixing the bearing holder and remove the bearing holder.
- 5 Hold the fan with hands and lift the bearing side up slightly. Then pull out the fan to the left to remove the fan and the motor.
- 6 When mounting the fan motor and fan, mount them in the reverse procedure. The fan shall be mounted 6~7mm away from the unit body.
- 7 The outlet of the lead wire for the fan motor shall be at the cabinet side and the lead wire shall be pulled out as shown in the figure below.


Outlet of lead wire

\bigcirc

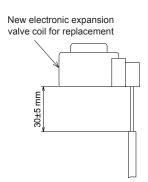
9.9.13 Removing Electronic Expansion Valve Coil

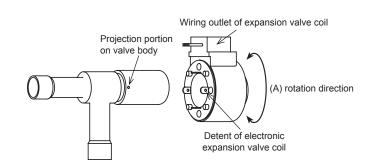
♦ For RPK-(0.6-1.5)FSN(H)3M

1 Remove the plastic band clamping wiring for the electronic expansion valve.

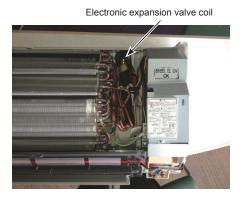
Plastic band

2 Rotate the expansion valve coil in the direction of the arrow (A) shown in the figure below. After releasing the detents for the expansion valve coil from the projection portions of the expansion valve body, pull up the coil frontward to remove it.




Take care not to twist the piping.

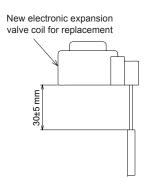
3 Insert the new expansion valve coil for replacement into the expansion valve body. Fit the projection portions into the detents with the wiring outlet facing up.

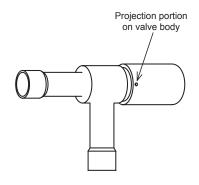

- The detents are located 90° apart in a circle and the projections are located 180° apart in a circle.
- Fit the projection portions into the detents. If inserting the coil incorrectly, it may cause malfunction of the expansion valve coil.
- 4 After the work, clamp the wirings for the expansion valve, the freeze protection thermistor, gas pipe thermistor and inlet air thermistor with one (1) plastic band.

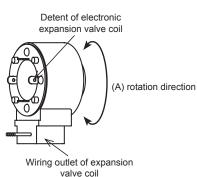
◆ For RPK-(2.0-4.0)FSN(H)3M

1 The rear pipe for the heat exchanger, the electronic expansion valve, and the piping at the inlet/outlet of the electronic expansion valve are protected with butyl sheets. Remove butyl sheets covering the piping, the expansion valve coil and the expansion valve body.

2 Rotate the expansion valve coil in the direction of the arrow (A) shown in the figure below. After releasing the detents for the expansion valve coil from the projection portions of the expansion valve body, pull up the coil to remove it.


Take care not to twist the piping.


Insert the new expansion valve coil for replacement into the expansion valve body. Fit the projection portions into the detents with the wiring outlet facing down.



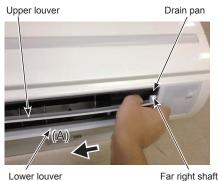
The detents are located 90° apart in a circle and the projections are located 180° apart in a circle. Fit the projection portions into the detents. If inserting the coil incorrectly, it may cause malfunction of the expansion valve coil.

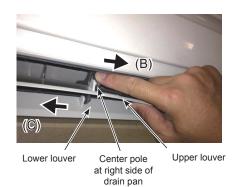
4 After the work, protect the expansion valve coil with butyl sheets and mount the heat exchanger in the reverse procedure.

9.9.14 Removing Horizontal Louver

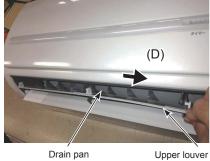
◆ For RPK-(0.6-1.5)FSN(H)3M

Do not remove the horizontal louver when removing the drain pan. Removing the horizontal louver will result in component failures.


◆ For RPK-(2.0-4.0)FSN(H)3M


Do not lose the bearings for each shaft at the right, middle, left and far left.

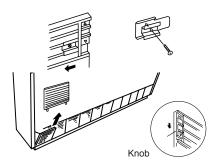
- 1 Open the upper and lower horizontal louver slightly.
- Slightly bend the upper horizontal louver and pull it in the direction of the arrow (A) to remove the shaft at the far right from the drain pan.
- 3 As slightly bending the center pole at the right side of the drain pan in the direction of the arrow (B), pull the upper horizontal louver in the direction of the arrow (C) to remove the shaft at the right from the drain pan.



Pull out the upper horizontal louver in the direction of the arrow (D) to remove it.

Drain pan

- 5 Remove the lower horizontal louver in the same procedure as the upper horizontal louver.
- 6 When mounting the horizontal louvers, mount the louvers in the reverse procedure.

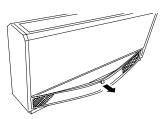

When mounting the horizontal louvers, insert the D-cut portions at the far right shafts of the louvers into the AS Motor shafts.

9.10 RPF(I)-(1.0-2.5)FSN2E - Floor and Floor concealed type

9.10.1 Removal of the air inlet grille

RPF-(1.0-2.5)FSN2E

- 1 Loosen the screws on the securing plate of the right part of the grille then remove the plates.
- 2 Press the button on both sides of the grille in the direction indicated by the arrow. The grille can be opened at a 30° angle.
- 3 Remove the air inlet grille from the hinges.

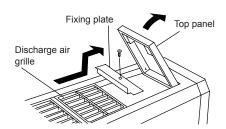


9.10.2 Removal of the air filter

RPF-(1.0-2.5)FSN2E

The air filter is located inside the air inlet grille.

- 1 Remove the air inlet grilles as indicated in section "9.10.1 Removal of the air inlet grille".
- 2 Remove the filter by pulling the filter button.



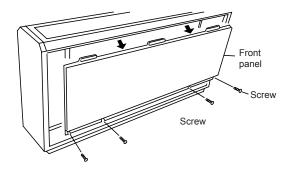
9.10.3 Removal of the air outlet grille

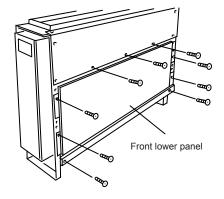
RPF-(1.0-2.5)FSN2E

- 1 Remove the screw holding the securing plate.
- 2 Open the upper panel so that it is vertical.
- 3 Slide and remove the air outlet grille.

9.10.4 Removal of the front panel

- Remove the central panel air filter in line with the instructions given in chapter "9.10.2 Removal of the air filter".
- 2 Remove the screws from the lower part of the front panel.



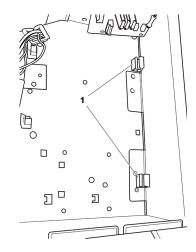

RPF-(1.0-2.5)FSN2E: 4 screws.

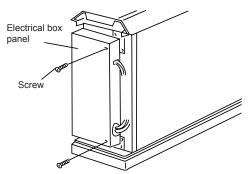
RPFI -1.0FSN2E: 9 screws.

RPFI -1.5FSN2E: 10 screws.

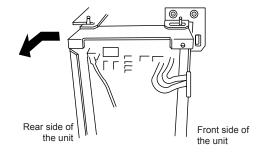
3 Remove the 11 set screws and remove the front panel.

9.10.5 Removal of the fan motor


- Remove the air inlet grille as indicated in chapter "9.10.1 Removal of the air inlet grille".
- Remove the air filter as indicated in section "9.10.2 Removal of the air filter".
- Remove the four set screws from the fan motor assembly plate and remove it. 3
- 4 Disconnect the wiring from the fan motor connector. Remove the wiring board and the connector.
- 5 Remove the cover by pressing the four attachment points inwards.
- 6 Loosen the bolts using a wrench.
- 7 Remove the securing plate.
- 8 Remove the fan motor by sliding it backwards.

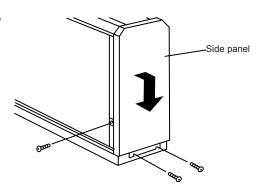

Be careful when releasing the fan motor, as it could fall.

9.10.6 Removal of the printed circuit board (PCB)


- 1 Remove the air inlet grille as indicated in section "9.10.1 Removal of the air inlet grille".
- 2 Remove the air filter as indicated in section "9.10.2 Removal of the air filter".
- 3 Remove the front panel as indicated in section "9.10.4 Removal of the front panel".
- 4 Remove the side panel, removing the 3 set screws and pulling the panel downwards.

- 5 Remove the panel from the electrical box after removing the four set screws.
- 6 Remove the 2 set screws from the electrical box and release the attachment from the top of the box. Turn the electrical box at a 90° angle.

7 Press the four attachment points of the PCB using long-tipped pliers and placing a finger next to the hole in the PCB before removing the PCB.



⚠ CAUTION

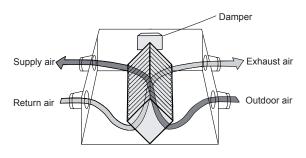
- Do not touch the electrical components of the PCB.
- Do not apply force to the PCB, as this could damage it.
- Pay special attention to the position of the connectors on the PCB. An incorrect position during installation may damage the PCB.

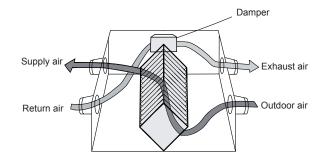
9.10.7 Removal of the thermistors from the liquid and gas piping

- 1 Remove the air inlet grille as indicated in section "9.10.1 Removal of the air inlet grille".
- 2 Remove the air filter as indicated in section "9.10.2 Removal of the air filter".
- 3 Remove the front panel as indicated in section "9.10.4 Removal of the front panel".
- 4 Remove the side panel, removing the 3 set screws and pulling the panel downwards.
- 5 Disconnect the wiring from the thermistor and remove the thermistor.

9.11.1 System description

An example of the system is shown below. Make sure the system has been checked by a HITACHI distributor.

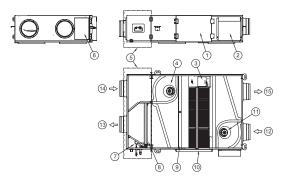

Exchange mode


The air returning from the indoor part passes through the total heat exchanger unit and is expelled outdoors.

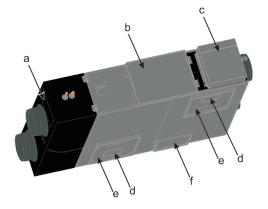
The outdoor air is supplied through the total heat exchanger.

Ventilation bypass mode

The air from indoors is expelled without heat exchange.


Automatic selection mode

(Factory-set). The operating mode is selected automatically according to the temperature conditions (outdoor, indoor and set).


9.11.2 Structure and part names

KPI-(252-2002)E4E and KPI-(502-1002)X4E

Nº	Part
1	HEX/Filters Service Cover
2	Electrical Box
3	Damper
4	Return air fan motor
5	Active module (only KPI-(502-1002)X4E)
6	Evaporator service cover (only KPI-(502-1002)X4E)
7	Expansion Valve (only KPI-(502-1002)X4E)
8	Evaporator (only KPI-(502-1002)X4E)
9	High efficiency filter (optional)
10	Heat exchanger
11	Supply air fan motor
12	OA - Outdoor Air
13	SA - Supply Air
14	RA - Return Air
15	EA - Exhaust Fan

9.11.3 Service cover location

9.11.4 Removal of Heat Exchanger

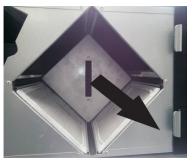
1 Pull the hinges back. Open and remove the service cover (b).

The service cover (b) is not fixed, pay attention when pull the hinges back because the cover can fall.

- 2 Hold onto the handle.
- 3 Remove the two total heat exchanger elements from the main unit.

9.11.5 Removal of the air filter

- 1 Pull the hinges back.
- 2 Open and remove the service cover (b).


The service cover (b) is not fixed, pay attention when pull the hinges back because the cover can fall.

It is recommended to remove the two heat exchanger

- 3 Hold onto the handle.
- 4 Remove the two total heat exchanger elements from the main unit.

5 Draw out the air filters (2 pieces) which are located at the bottom of the heat exchanger elements.

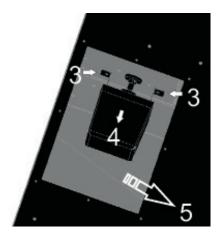
9.11.6 Removal of the float switch (X4E series only)

1 Remove the 4 screw from the service cover (a) situated closed the SA duct connector and remove the service cover.

2 Float switch is on the bottom left side, close de service window.

- 3 Unscrew the nut on the float switch and remove from its bracket.
- 4 Unplug the connector that is inside the protection cap and take out the float switch.

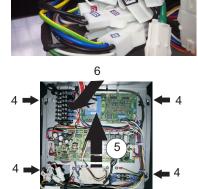
9.11.7 Removal of the damper motor


1 Unscrew the 6 screw form the service cover (f).

2 Unplug the connector that is inside the protection cap.

- 3 Unscrew the 2 screws that are fixing the motor brackets
- 4 Separate the damper motor from the housing
- 5 Remove the damper motor

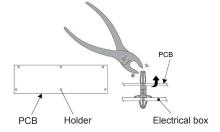
9.11.8 Removal of the electrical box


1 Unscrew the 2 screw from the service cover (c)

- 2 Unplug all connectors.
- 3 Disconnect the power supply and communication cables from the terminal board



- 5 Move the electrical box slightly upwards
- 6 Pull it out towards yourself


9.11.9 Removal of the PCB

- 1 Remove the electrical box
- 2 Disconnect all the connectors in the PCB.
- 3 Remove the PCB by unlocking the four (4) plastic holders (*) per PCB

- Do not touch the electrical components of the PCB.
- Do not apply force to the PCB, as this could damage it.
- Pay special attention to the position of the connectors on the PCB. An incorrect position during installation may damage the PCB.

9.11.10 Removal of the fan motor

1 Remove all 4 screws from the fan service cover (d)

2 Unplug the connector that is inside the protection cap

3 Remove all 4 screws from the fan assy (e)

Use a 5 mm allen key (hexagon key)

4 Remove the fan with the assembled cover

The fan kit is not fixed, pay attention when all 4 screws are removed, the fan can fall.

In order to remove de cover from the fan, unscrew all 4 screws.

9.11.11 Removal of the DX-Coil Module (X4E series only)

1 Unscrew the 4 screw from the service cover (a) situated closed the SA duct connector and remove the service cover.

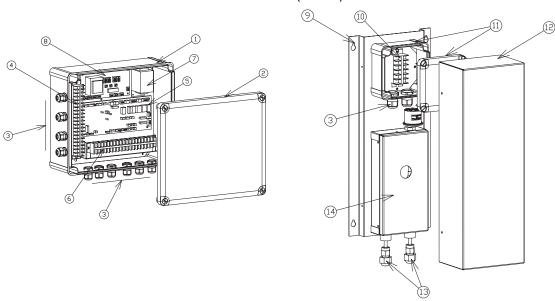
- 2 Unplug the connector that is inside the protection cap
- 3 Cross the connector thought the hole in the end wall.



4 Unscrew all 4 screw (2 in on side and 2 in the other side)

DANGER

- When unscrew all 4 screw pay attention because the DX-Coil Module is not fixed, and can fall.
- DX-Coil module it heavy, two persons are required for remove this component.


5 The DX-Coil Module can be removed

9.12 DX-Interface

9.12.1 Structure and part names

Nº	Name	Nº	Name
1	Control box	8	PCB2
2	Control box cover	9	Expansion valve box
3	Cable gland	10	Terminal board 3
4	Terminal board 1	11	Terminal board box and cover
5	PCB1	12	Expansion valve box cover
6	Terminal board 2	13	Refrigerant connections
7	Transformer	14	Expansion valve device

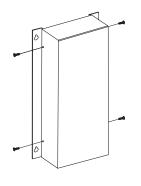
9.12.2 Removal of the electrical components

♦ Control box

Remove the control box cover unscrewing the 4 screws.

Expansion valve box

- 1 Remove the expansion valve box cover unscrewing the 4 screws.
- 2 Remove the terminal box like the control box cover.



Handle the support carefully to avoid damaging the electrical components.

- Do not touch the electrical components of the PCB.
- Do not apply force to the PCB, as this could damage it.
- Pay special attention to the position of the connectors on the PCB. An incorrect position during installation may damage the PCB.

10. Troubleshooting

Index

10.1	Electronic expansion valve check procedure	.344
10.2	Procedure for checking fan motors in indoor units	. 344
10.3	Inspection of other components	. 346
10.4	Outdoor and indoor alarm codes	. 347
10.5	DX-Interface EXV-(2.0-10.0)E2 or KPI-(E/X)4E alarm codes	.349

10.1 Electronic expansion valve check procedure

Valve position	Electronic expansion valve		
Locked fully closed	Check the temperature of the piping in the heating process. Failure of the temperature to rise indicates a fault.		
Locked slightly open	The following conditions indicate a fault:		
Locked fully open	Where the freeze protection thermistor temperature is lower than the intake air temperature.		
Locked fally open	Where the unit being inspected stops and other units continue operating in cooling mode.		

10.2 Procedure for checking fan motors in indoor units

Name and abbreviation of the cable colours used:

Black	Brown	Red	Yellow	Green	Blue	Grey	Orange	White
BLK	BRN	RED	YEL	GRN	BLU	GRY	ORN	WHT

Indoor units	Power output	Wiring diagram	Cable number	Resistance (Ω)
RCI-1.0FSN4				
RCI-1.5FSN4			-	_
RCI-2.0FSN4	57 W	DC motor		
RCI-2.5FSN4				
RCI-3.0FSN4				
RCI-4.0FSN4				
RCI-5.0FSN4	127 W	DC motor	_	_
RCI-6.0FSN4				
RCIM-0.6FSN4(E)				
RCIM-0.8FSN4(E)				
RCIM-1.0FSN4(E)	E7 \\\	DC motor		
RCIM-1.5FSN4(E)	57 W	DC III0(0)	_	_
RCIM-2.0FSN4(E)				
RCIM-2.5FSN4(E)				
RCD-0.8FSN2				
RCD-1.0FSN2	F7.\\\			
RCD-1.5FSN2	57 W		_	_
RCD-2.0FSN2		DC Motor		
RCD-2.5FSN2	55 W	DO MOIO		
RCD-3.0FSN2	55 VV			
RCD-4.0FSN2	35 W x 2			
RCD-5.0FSN2	55 W x 2			
RPC-3.0FSN3E RPC-4.0FSN3E RPC-5.0FSN3E RPC-6.0FSN3E	145 W		BLK1-2RED RED2-3YEL YEL3-4GRY RED2-6WHT	32.10 24.50 24.50 44.70 to 25 °C
RPC-1.5FSN3 RPC-2.0FSN3	50 W	DC motor	_	_

Indoor units	Power output	Wiring diagram	Cable number	Resistance (Ω)
RPC-2.5FSN3	. ono. oatpat	Timing diagram		110010101100 (22)
RPC-3.0FSN3	80 W	DC motor	_	_
RPC-4.0FSN3				
RPC-5.0FSN3	160 W	DC motor	_	_
RPC-6.0FSN3				
RPI(M)-0.6FSN4E-(DU)				
RPI(M)-0.8FSN4E-(DU)				
RPI(M)-1.0FSN4E(-DU)	60 W		_	_
RPI(M)-1.5FSN4E(-DU)				
RPI-2.0FSN4E		DC motor		
RPI-2.5FSN4E	450 \\	DC motor		
RPI-3.0FSN4E	150 W		_	_
RPI-4.0FSN4E				
RPI-5.0FSN4E	250 W		_	_
RPI-6.0FSN4E				
RPI-(8.0/10.0) FSN3E(-f) RPI-(16.0/20.0) FSN3PE(-f)	1065 W		BLK1-2RED RED2-3BLU BLU3-4GRY GRY4-5YEL RED2-6WHT	5.00 0.75 0.75 0.75 9.20 to 20 °C
RPK-0.6FSN(H)3M RPK-0.8FSN(H)3M	38 W DC motor		-	_
RPK-1.0FSN(H)3M RPK-1.5FSN(H)3M RPK-2.0FSN3M RPK-2.5FSN3M RPK-3.0FSN3M RPK-4.0FSN3M	40 W	DC motor	_	

Indoor units	Power output	Wiring diagram	Cable number	Resistance (Ω)
RPF(I)-1.0FSN2E	7000	Milli	BLK1-2RED RED2-3WHT	231.70 198.70 136.20
RPF(I)-1.5FSN2E	28 W	4	WHT3-4BLU BLU4-5ORN ORN5-6YEL	71.20 202.40 to 20 °C
RPF(I)-2.0FSN2E RPF(I)-2.5FSN2E	45 W		BLK1-2RED RED2-3WHT WHT3-4BLU BLU4-5ORN ORN5-6YEL	97.90 138.10 61.60 35.20 61.00 to 20 °C

10.3 Inspection of other components

Component name	Unit model	Model code	Resistance (MΩ)	
	RCI-FSN4	TBC	TBC	
Drain motor	RCIM-FSN4(E)	DCD 42/AVUILT 2	100	
Drain motor	RPI(M)-FSN4E(-f)	PSB-12(A)HHT-2		
	RCD-FSN2E	KJV-1004	347 to 21°C	

10.4 Outdoor and indoor alarm codes

The following alarm codes are displayed in the 7-segments on the PCB of the outdoor units.

Code number	Category	Abnormality	Cause	
1	Indoor unit	Activation of protection device (float switch)(*)	Failure of fan motor, drain discharge, PCB, relay, float switch activated (High water level in drain pan, abnormality of drain pipe, float switch or drain pan)	
2	Outdoor unit	Activation of protection device (high pressure cut)	Activation of PSH, locked motor, abnormal operation in the power supply phase. Failure of fan motor, drain discharge, PCB, relay, float switch activated. (Pipe clogging, excessive refrigerant, inert gas mixing, fan motor locking at cooling operation)	
3		Abnormal transmission between outdoor and indoor units	Incorrect wiring. Loose terminals, Failure of PCB (control or inverter). Tripping of fuse. Power supply OFF.	
ч	Transmission	Abnormal transmission between inverter PCB (DIP-IPM) and outdoor unit PCB (PCB1)	Transmission failure between inverter PCBs. (Loose connector, wire breaking, blowout of fuse)	
5	Power supply	Reception of abnormal operation code for detection of power source phase (Abnormal power source)	Power source with abnormal wave pattern. Main power supply phase is reversely connected or one phase is not connected. (units with power supply 3N~ 400V 50Hz only)	
5	Voltage	Excessively low voltage or excessively high voltage for the inverter	Voltage drop in power supply. Incorrect wiring or insufficient capacity of power supply wiring.	
ר	Cycle	Decrease in discharge gas superheat (TdSH)	Excessive refrigerant charge, failure of thermistor, incorrect wiring, incorrect piping connection, expansion valve locking at opened position (disconnected connector).	
8		Excessively high discharge gas temperature at the top of compressor	Insufficient refrigerant charge, refrigerant leakage. Expansion valve closed or clogged.	
11		Air inlet thermistor(*)		
12		Air outlet thermistor(*)		
13	Indoor units	Freeze protection thermistor(*)	Failure of thermistor, sensor, connection. (Incorrect wiring, disconnected wiring, wire breaking,	
14	sensor	Gas piping thermistor(*)	short circuit).	
15		Remote thermistor		
ויו		Thermistor of RCS		
19	Fan motor	Activation of the protection device for the indoor fan motor(*)	Failure of fan motor or CB activation (overcurrent) for RPI-(16.0/20.0)FSN3PE(-f)	
20		Compressor thermistor		
21		High pressure sensor		
22	Outdoor unit	Thermistor for outdoor ambient temperature (THM7)	Incorrect wiring, disconnected wiring, broken cable, short circuit.	
23	Outdoor unit sensor	Thermistor for discharge gas temperature (THM9)		
24		Thermistor for evaporating temperature (THM8)	Incorrect wiring, disconnected wiring, wire breaking, short circuit, fan motor locking at heating operation.	
29		Low pressure sensor	Incorrect wiring, disconnected wiring, broken cable, short circuit.	
3 (Incorrect capacity setting or combined capacity between outdoor and indoor units	Incorrect capacity code setting, excessive or insufficient indoor unit total capacity code	
32		Incorrect setting signal from another Indoor Unit in same system (RPK only)	Abnormality of another indoor unit in the same refrigerant cycle (failure of power source, abnormality of PCB)	
35	System	Incorrect indoor unit number setting (Incorrect IU addversing)	Duplication of indoor unit number , number of indoor units over specifications.	
35		Incorrect of indoor unit combination	"Indoor Unit is designed for other refrigerant (R22 or R407C)."	
		Abnormality of picking up circuit for	Failure of indoor unit PCB, incorrect wiring, connection	

Code number	Category	Abnormality	Cause	
41		Cooling overload (possible activation of high pressure device)	OU pipe thermistor temperature is higher than 55 °C and the compressor top temperature is higher than 95 °C, OU protection device is activated.	
42	Pressure	Heating overload (high-pressure device may be activated)	If IU freeze protection thermistor temperature is higher than 55 °C and compressor top temperature is higher than 95 °C, OU protection device is activated.	
43		Activation of the safety device from compression ratio decrease	Abnormal compressor (Compressor, Inverter damage)	
44		Activation of the safety device from excessively high suction pressure	Overload during cooling, high temperature with heating, locked expansion valve	
45		Activation of the safety device from excessively high discharge pressure	Overload (obstruction of HEX, short circuit) mixture of inert gas, excessive refrigerant.	
47	Protection device	Activation of the safety device from excessively low suction pressure (protection from vacuum operation) (low pressure decrease prevention)	Shortage or leakage of refrigerant, piping clogging, expansion valve close-locked, fan motor locked.	
48		Activation of overcurrent protection	Overload, overcurrent. Failure of DIP IPM, IPM or PCB2, heat exchanger clogged, locked compressor. EVI/EVO failure. Cycle abnormality.	
51		Abnormal operation of the current sensor	Incorrect wiring of current sensor. Failure of control PCB, DIP IPM, IPM or PCB2.	
53	Inverter	Inverter fin temperature increase	Inverter module (IPM, DIP-IPM) and PCB2 abnormality. Failure of compressor, clogging of heat exchanger.	
54		Abnormality of inverter fin temperature	Heat exchanger clogging. Fan motor failure	
55		Abnormality of inverter module (not working)	Failure of DIP-IPM, IPM or PCB2.	
57	Outdoor fan	Fan Motor abnormality	Disconnected wire of incorrect wiring between control PCB and inverter PCB. Incorrect wiring or fan motor abnormality.	
EE	Compressor	Compressor protection	"Compressor failure. This alarm code appears when the following alarms 02, 07, 08, 45, 47 occur three times within 6 hours."	
ьО	IU model setting	Incorrect setting of unit model	No setting of unit capacity or incorrect setting of unit capacity	
ы	Number setting	Incorrect setting address or refrigerant cycle	Over 64 indoor units setting by number or indoor unit address.	
65	raniber setting	Incorrect setting of indoor unit number for H-LINK type	The number of indoor units connected to the H-Link II of one system is 17 or higher	

i NOTE

(*) In the case of RPI-16/20, the fan motor of both units is stopped immediately upon occurrence of an alarm at either of the units (upper or lower side). The remote control switch indicates the cause of alarm (codes 1, 11, 12, 13, 14, 19) for the unit where the alarm has occurred, while alarm code 19 (Fan motor stoppage) is indicated for the other unit. Therefore it is necessary to check both units only in case of occurrence of alarm 19.

10.5 DX-Interface EXV-(2.0-10.0)E2 or KPI-(E/X)4E alarm codes

Code number	DX- KIT2	KPI-E3	KPI- Active	Category	Type of abnormality	Main cause
D (0	-	0	Indoor	Activation of protection device	Float switch activation (high water level in drain hose or abnormality in drain pipe, float switch or drain pan).
03	0	-	0	Transmission	Transmission error	Outdoor fuse meltdown, Indoor/outdoor connection wiring (breaking, wiring error, etc.)
11	0	0	0	Indoor	Air inlet thermistor (RA for KPI)	Loose, disconnected, broken or short-circuited connector
12	0	0	0	Indoor	Air outlet thermistor (OA for KPI)	Loose, disconnected, broken or short-circuited connector
13	0	-	0	Indoor	Liquid pipe thermistor	Loose, disconnected, broken or short-circuited connector
14	0	-	0	Indoor	Gas pipe thermistor	Loose, disconnected, broken or short-circuited connector
15	-	-	-	Indoor	Fresh outdoor air thermistor (Econofresh)	Loose, disconnected, broken or short-circuited connector
15	-	-	0	Indoor	Air inlet DX Coil thermistor (Tincoil)	Loose, disconnected, broken or short-circuited connector
17	-	-	0	Indoor	Air outlet DX Coil thermistor (Toutcoil)	Loose, disconnected, broken or short-circuited connector
18	(0)	О	0	Indoor	Indoor RA fan protection device activation for KP	Fan motor overheating, locking.
19	0	0	0	Indoor	Indoor OA fan protection device activation for KPI or DX-KIT2 Fan	Fan motor overheating, locking.
31	0	-	0	System	Incorrect setting of outdoor and indoor units	Outdoor/Indoor Unit capacity setting error, Indoor total capacity excessively large/small
35	0	-	0	System	Indoor unit number setting error	Indoor units with the same number exist in a refrigerant piping system
מר	0	0	0	Indoor	Abnormal transmission between PCB1 and PCB2	Loose, disconnected
71	0	0	0	Indoor	Incorrect PCBs setting	Wrong setting are performed in PCBs
73	0	0	0	Indoor	Incorrect 4-20mA. 0-10V, 0-5V, 0-10kΩ setting	Loose, disconnected, broken or short-circuited connector
EE	0	-	0	Compressor	Compressor protection alarm (cannot be reset from the remote controller)	This alarm code is displayed when the following alarms are triggered three times within six hours: 02,07,08,39,43 to 45, 47
74	-	-	-	Indoor	Remote sensor thermistor (Trem)	Loose, disconnected, broken or short-circuited connector

These alarm codes are displayed in the 7 segments on PCB2 corresponding to the DX-Interface EXV-(2.0-10.0)E2 or KPI-(E/X)4E.

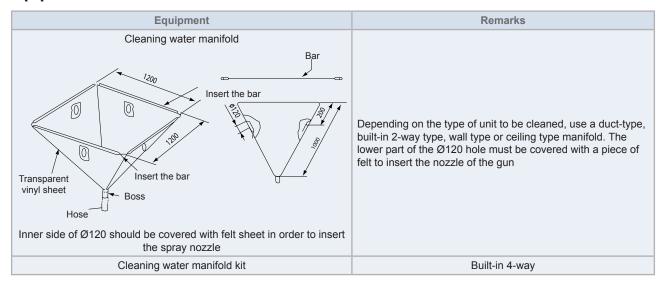
11. Maintenance notes

Index

11.1	Regular equipment maintenance	352
	11.1.1 Necessary tools, equipment and consumable for regular maintenance	352
11.2	Indoor cleaning	353
	11.2.1 Cleaning the built-in 4-way indoor unit RCI(M)	353
	11.2.2 Cleaning the built-in 2-way indoor unit (RCD)	356
	11.2.3 Cleaning of the wall-type indoor unit (RPK)	358
	11.2.4 Cleaning the floor console and floor concealed console indoor unit RPF(I)	359
	11.2.5 Cleaning of the ceiling-type indoor unit (RPC)	360
11.3	Cleaning of KPI units	363
11.4	Econofresh kit	365
11.5	Collection of refrigerant to replace the indoor unit	365
11.6	Cleaning agents for heat exchanger	366
	11.6.1 Recommended specifications of cleaning agents for aluminium fins	366
	11.6.2 Particularities and benefits	366
	11.6.3 To consider	366

11.1 Regular equipment maintenance

11.1.1 Necessary tools, equipment and consumable for regular maintenance


♦ Tools

Tool	Remarks
Water pump for cleaning	Use of a water pump with a tank is recommended
Water tank with clean water	Approx. 18 litres
Nozzle	Attached with Water Pump
Brush	Nonmetal, with a brush length of 25 to 35 mm. If the heat exchanger is heavily clogged with dust, remove it with this brush.
Bucket	Capacity 2 to 5 litres
Philips screwdriver	1
Tweezers	1
Adjustable wrench	1
Megohmmeter	Measured voltage of up to 500 V
Gun	Applying cleaning water
Rope	4 ropes measuring 1 m
Vinyl sheeting	Thickness of 0.5 mm
Gloves	
Water pan pipe	Select a pipe in line with the installation requirements
Cleaning product	Use a neutral cleaning product

Consumables

Consumable	Remarks	
Cleaning product	Neutral soap	
Adhesive tape	To secure the vinyl sheeting so that the room is protected from the cleaning water	
Piece of felt	Diameter of 120 mm	

Equipment

11.2 Indoor cleaning

11.2.1 Cleaning the built-in 4-way indoor unit RCI(M)

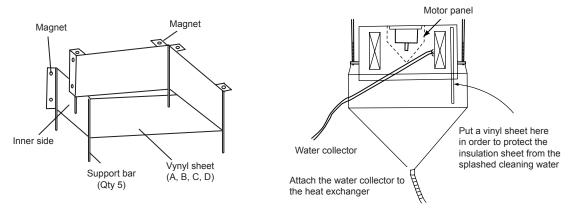
Preliminary procedure

- 1 Place a vinyl sheet on the floor to protect the furniture and other items from the cleaning water before starting this work
- 2 Remove the optional air panel as indicated in section "9.2.4 Removal of the optional air panel".
- 3 Remove the electrical box after opening the corresponding panel and then disconnect the connectors located between the indoor and outdoor units and other connectors, as indicated in sections "9.2.3 Removal of the electrical box cover" and "9.2.5 Removal of the fan runner and the fan motor".
- 4 Remove the bell mouth and fan as indicated in section "9.2.6 Removal of the printed circuit board (PCB)".
- 5 Remove the drain pan, according to "9.2.7 Removal of the drain pan".
- 6 Remove the float switch as indicated in sections "9.2.8 Removal of the drain mechanism".
- 7 Remove the drain-up mechanism.

Also carry out the following tasks:

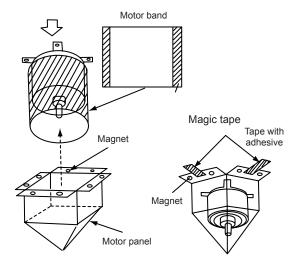
- 1 Remove the drain pan after emptying it of water.
- 2 Empty the drain pan of water by removing the rubber plug. Make sure the water flows easily through the hole by inserting a pencil into it.
- 3 Once the drain pan has been removed, check that there is no water in the drainage at the bottom of the pan.
- 4 Clean and dry the pan before removing it. Handle the pan carefully.

Cleaning the indoor unit

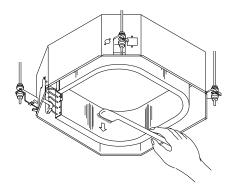


NOTE

Wear gloves to avoid injuries caused by the heat exchanger fins.


Place a vinyl sheet around the heat exchanger to prevent the cleaning water from splashing the insulation surface and drain pump.

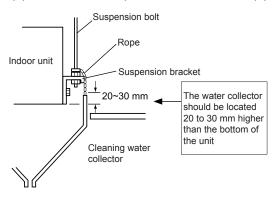
Secure the vinyl sheet to the side plate of the exchanger using adhesive tape and seal the gap between the vinyl sheets in the same manner.

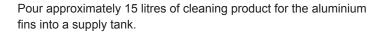


Place a vinyl sheet around the motor to prevent the cleaning water from splashing the electrical motor.

Secure the motor panel using adhesive tape.

Clean the dust from the inner surface of the heat exchanger by brushing it downwards. Collect all of the dust in a bucket or a cardboard box.

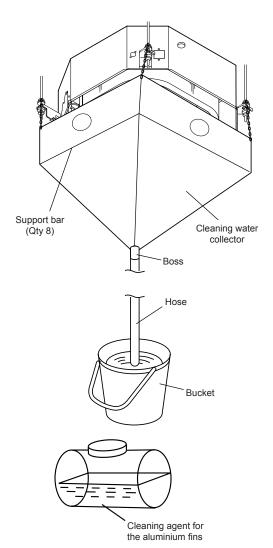

Hang the cleaning water manifold from the indoor unit.

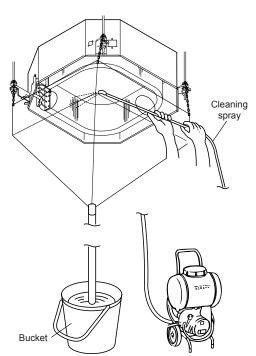

Tie the rope to the suspension bolts of the indoor unit and drop downwards.

Insert the support bars into the holes in the water manifold.

Tie the rope to the support bar of the water manifold and hang the manifold.

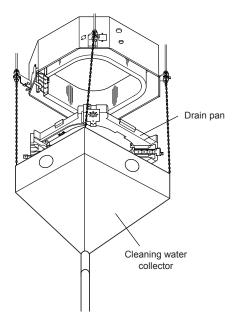
Connect a pipe to the boss and place the end inside the pipe.




Insert the nozzle of the pressurised water gun into the hole in the cleaning water manifold. Start the water pump and clean the heat exchanger of any dust.

Adjust the pressure of the water pump in order not to damage the fins.

After cleaning, spray and remove all remains of water.


- 1 After cleaning, fit the drain pan by lowering the rope.
- 2 Dry the remains of any water on the indoor unit.
- 3 Check the insulation of the drain pump using a megohmmeter. Check that the insulation is above 1 $M\Omega$ when 500V are applied.
- 4 Connect the wiring.
- 5 Perform the neutralisation treatment after cleaning.

After cleaning remove all remains of water.

- 1 After cleaning, fit the drain pan by lowering the rope.
- 2 Dry the remains of any water on the indoor unit.
- 3 Check the insulation of the drain pump using a megohmmeter. Check that the insulation is above 1 M Ω when 500V are applied.
- 4 Connect the wiring.
- 5 Perform the neutralisation treatment after cleaning.

11.2.2 Cleaning the built-in 2-way indoor unit (RCD)

Preliminary procedure

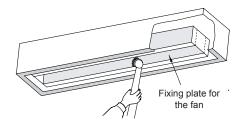
Place a vinyl sheet on the floor to protect the furniture and other items from the cleaning water before starting this job.

Remove the drain pan as indicated in section "9.3.8 Removal of the drain pan". Also carry out the following tasks:

- 1 Remove the drain pan after emptying it of water.
- 2 Empty the drain pan of water by removing the rubber plug. Make sure the water flows easily through the hole by inserting a pencil into it.
- 3 Once the drain pan has been removed, check that there is no water in the drainage at the bottom of the pan.
- 4 Clean and dry the pan before removing it. Handle the pan carefully.

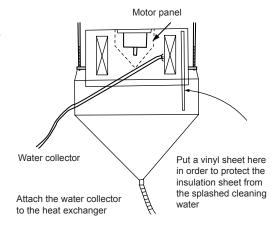
Remove the electrical box after opening the corresponding panel and then disconnect the connectors located between the indoor and outdoor units and other connectors, as indicated in section "9.3.2 Removal of the electrical box".

Remove the float switch as indicated in section "9.3.6 Removal of the float switch".

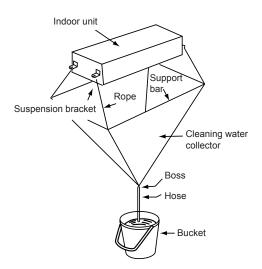

Remove the drainage mechanism as indicated in section "9.3.7 Removal of the drain mechanism".

Cleaning the indoor unit

Clean the dust from the inner surface of the heat exchanger by brushing it downwards. Collect all of the dust in a bucket or a cardboard box.



Wear gloves to avoid injuries caused by the heat exchanger fins.


Place a vinyl sheet around the heat exchanger to prevent the cleaning water from splashing the insulation surface and drain pump. Secure the vinyl sheet to the side plate of the exchanger using adhesive tape and seal the gap between the vinyl sheets in the same manner.

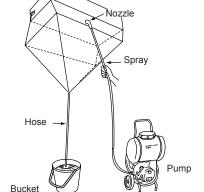
Secure the motor panel using adhesive tape.

Hang the cleaning water manifold from the indoor unit.

- 1 Tie the rope to the suspension bolts of the indoor unit and drop downwards.
- 2 Insert the support bars into the holes in the water manifold.
- 3 Tie the rope to the support bar of the water manifold and hang the manifold.
- 4 Connect a pipe to the boss and place the end inside the pipe.

Pour approximately 15 litres of cleaning product for the aluminium fins into a supply tank.

Insert the nozzle of the pressurised water gun into the hole in the cleaning water manifold. Start the water pump and clean the heat exchanger of any dust.


After cleaning, spray and remove all remains of water.

NOTE

Set the pressure of the water pump so as not to damage the funs.

Any cleaning water left behind will rust the fins. Set the pump pressure to between 2.5 and 5 kg/cm 3 to protect the fins.

After cleaning, fit the drain pan by lowering the rope.

Dry the remains of any water on the indoor unit.

Check the insulation of the drain pump using a megohmmeter. Check that the insulation is above 1 $M\Omega$ when 500V are applied.

Connect the wiring.

Perform the neutralisation treatment after cleaning.

11.2.3 Cleaning of the wall-type indoor unit (RPK)

Preliminary procedure

Place a vinyl sheet on the floor to protect the furniture and other items from the cleaning water before starting this job.

Remove each part as indicated in the "3.5.11 RPK-(0.6-4.0)FSN(H)3M - Wall type" section.

Remove the front panel as indicated in section "9.9.2 Removal of the front panel".

Remove the electrical box after opening the corresponding panel and then disconnect the connectors located between the indoor and outdoor units and other connectors, as indicated in section "9.9.7 Removing Electrical Box".

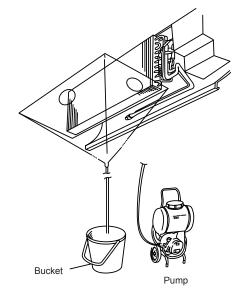
Remove the drain pan. Also carry out the following tasks:

- 1 Remove the drain pan after emptying it of water.
- 2 Empty the drain pan of water by removing the rubber plug. Make sure the water flows easily through the hole by inserting a pencil into it.
- 3 Once the drain pan has been removed, check that there is no water in the drainage at the bottom of the pan.
- 4 Clean and dry the pan before removing it. Handle the pan carefully.

Remove the heat exchanger as indicated in sections "9.9.10 Removing Heat Exchanger" and "9.9.12 Removing Fan and Fan Motor".

Cleaning the indoor unit

Wear gloves to avoid injuries caused by the heat exchanger fins.


Clean the inner surface of dust. Collect all of the dust in a bucket or a cardboard box.

Place a vinyl sheet around the electrical components to protect them from splashed cleaning water.

Secure the motor panel using adhesive tape.

Hang the cleaning water manifold from the indoor unit.

- 1 Tie the rope to the suspension bolts of the indoor unit and drop downwards.
- 2 Insert the support bars into the holes in the water manifold.
- 3 Tie the rope to the support bar of the water manifold and hang the manifold.
- 4 Connect a pipe to the boss and place the end inside the pipe.

Pour approximately 15 litres of cleaning product for the aluminium fins into a supply tank.

Insert the nozzle of the pressurised water gun into the hole in the cleaning water manifold. Start the water pump and clean the heat exchanger of any dust.

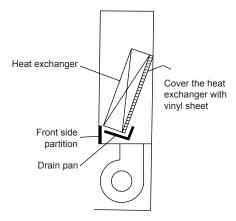
After cleaning, spray and remove all remains of water.

- Set the pressure of the water pump so as not to damage the funs.
- Any cleaning water left behind will rust the fins. Set the pump pressure to between 2.5 and 5 kg/cm³ to protect the fins.

Dry the remains of any water on the indoor unit.

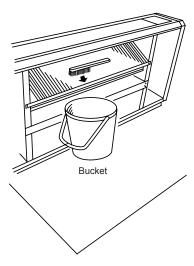
Check the insulation of the drain pump using a megohmmeter. Check that the insulation is above 1 M Ω when 500V are applied.

Connect the wiring.


Perform the neutralisation treatment after cleaning.

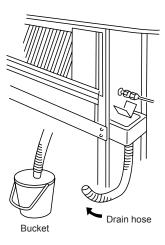
After cleaning, fit the drain pan by lowering the rope.

Perform the neutralisation treatment after cleaning.


11.2.4 Cleaning the floor console and floor concealed console indoor unit RPF(I)

Remove the front panel in line with the instructions given in chapter "9.10.4 Removal of the front panel".

Remove any dust from the heat exchanger.


Remove the dust from the heat exchanger by brushing it in a downwards direction. Collect all of the dust in a bucket or a cardboard box.

Disconnect the drain pipe from the piping.

Cover the rear of the heat exchanger with a sheet of vinyl after removing the front partition and the drain pan. After covering the rear, refit the front partition and the drain pan.

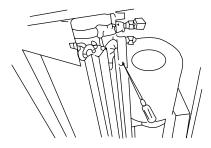
Lift the drain pipe and place the end in a bucket.

11.2.5 Cleaning of the ceiling-type indoor unit (RPC)

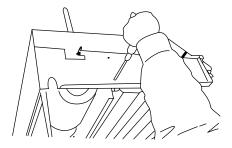
Preliminary procedure.

Place a vinyl sheet on the floor to protect the furniture from the cleaning water before starting this job.

Remove the side panels in line with the instructions given in chapter "9.4.2 Removal of the side panel".


Remove the louver in line with the instructions given in chapter "9.4.3 Removal of the air outlet grille".

Open the air inlet grille as indicated in chapter "9.4.1 Removal of the air filter".


Remove the lower panel and drain pan in line with the instructions given in chapter "9.4.8 Removal of the thermistors from the liquid and gas pipes".

Remove the partition plate after removing the set screws.

Remove the fan securing cover after removing the two screws located on the left and right of the partition.

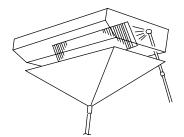
Fit the drain pan and the lower panel in the opposite order of the instructions.

Cleaning the indoor unit

i NOTE

Wear gloves to avoid injuries caused by the heat exchanger fins.

Place a vinyl sheet around the electrical components except the drain pan to protect them from splashed cleaning water.


Secure the motor panel using adhesive tape.

Clean the dust from the inner surface of the heat exchanger by brushing it downwards. Collect all of the dust in a bucket or a cardboard box.

Hang the cleaning water manifold from the indoor unit.

Insert the nozzle of the pressurised water gun into the hole in the cleaning water manifold. Start the water pump and clean the heat exchanger of any dust.

After cleaning, spray and remove all remains of water.

i NOTE

- Set the pressure of the water pump so as not to damage the funs.
- Any cleaning water left behind will rust the fins. Set the pump pressure to between 2.5 and 5 kg/cm³ to protect the fins.

After cleaning, fit the drain pan by lowering the rope.

Dry the remains of any water on the indoor unit.

Check the insulation of the drain pump using a megohmmeter. Check that the insulation is above 1 M Ω when 500V are applied.

Perform the neutralisation treatment after cleaning.

◆ RPI(M) - Ducted indoor unit type

DANGER

Wear gloves to avoid injuries when handling components.

Work prior to cleaning

Turn off the power supply switches before starting maintenance work and fit the appropriate safety locks and warnings.

Wait 5 minutes after turning off the power supply switches.

Place a vinyl sheet on the floor to protect the furniture and other items from the cleaning water.

Remove the following components:

- 1 Side panel.
- 2 Discharge air grille.
- 3 Air filter.
- 4 Liquid and gas piping thermistors.
- 5 Fan motor.

Remove the set screws from the partition plate 2 and remove the plate.

Remove the set screws from the fan cover, located on the left and right of the partition. Then remove the fan cover.

Fit the drain pan and the lower panel.

Cover the components (except the drain pan) with a vinyl sheet to avoid splashing with cleaning water.

Use a brush to clean any dust from the interior surface of the heat exchanger and the fins. To do so, brush downwards and collect all of the dust in a bucket or cardboard box.

Spray cleaning water over the fins from the rear of the heat exchanger.

Follow the steps below to wash with clean water:

- 1 Set the water pump pressure to between 2.5 and 5 kg/cm² to protect the fins.
- 2 Start the water pump and wash the fins with clean water.

Work and checks after cleaning

- 1 Measure the drainage pump insulation using a megohmmeter, check that the insulation is over a 1 $M\Omega$ on applying 500 V.
- 2 Pour water into the drain pan to check that the water flows easily.
- 3 Remove the vinyl sheets.
- 4 Fit the fan cover and fit and tighten the cover securing screws.
- 5 Fit the partition plate and fit and tighten the plate securing screws.
- 6 Fit the following components:
 - a. Fan motor.
 - b. Liquid and gas piping thermistors.
 - c. Air filter.
 - d. Discharge air grille.
 - e. Side panel.

The cleaning product is neutral. However, after it has been used the cleaning water may no longer be neutral.

7 Collect the cleaning water and apply the neutralisation treatment once you have disposed of it.

11.3 Cleaning of KPI units

Filter maintenance

Preliminary procedures

Turn off all power supply switches before starting maintenance work.

Wait 5 minutes after stopping the unit before starting the cleaning procedure.

Do not start the system without the air filter to avoid blockages in the total heat exchanger.

DANGER

Wear gloves to avoid injuries when handling the filter.

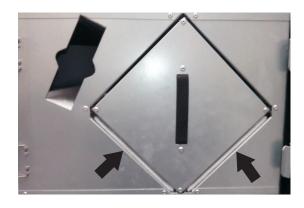
NOTE

- Clean the heat exchanger unit once or more every two years.
- Clean the air filter more than once a year.

KPI-(252-2002)E4E and KPI-(502-1002)X4E

Pull the hinges back.

Open and remove the service cover.

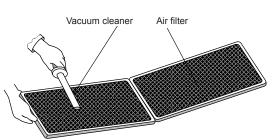


⚠ CAUTION

The service cover is not fixed, pay attention when pull the hinges back because the cover can fall.

Remove the air filters located at the bottom left and bottom right, close to the heat exchanger unit.

Use a vacuum cleaner to suck up any dust.


Dissolve a little neutral soap in cold or warm water to clean the dirt.

Place the filters in the soapy water to clean them.

Allow the filters to dry.

Fit the filter.

Close the service cover.

Cleaning energy recovery ventilation unit elements

Clean the element once or more every two years to prevent the air flow and efficiency from dropping.

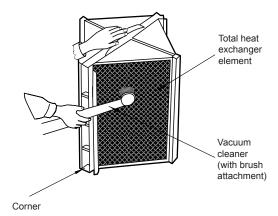
CAUTION

- Do not wash the element with water under any circumstances.
- Do not use the hard nozzle on the vacuum cleaner, as this could damage the exposed parts of the heat exchanger.

Hold onto the handle. Remove the two total heat exchanger elements from the main unit.

KPI-(252-2002)E4E and KPI-(502-1002)X4E

Use a vacuum cleaner to suck up any dust and dirt from the exposed surfaces of the total exchanger elements.


Fit a nozzle with a brush to a vacuum cleaner to carry out this task.

Clean the elements by brushing the exposed surfaces gently.

Fit the element.

Fit the air filter.

Close the service cover.

11.4 Econofresh kit

DANGER

Wear gloves to avoid injuries when handling components.

CAUTION

- Clean the air filter more than once a year.
- Clean the heat exchanger unit once or more every two years.

Turn off the power supply switches before starting maintenance work and fit the appropriate safety locks and warnings.

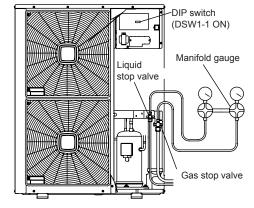
Wait 5 minutes after turning off the power supply switches.

Clean the exchanger and/or air filter.

CAUTION

- Do not start the system without the air filter.
- Turn on the power supply after completing the maintenance work.

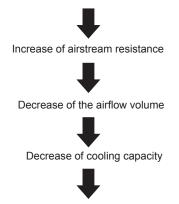
11.5 Collection of refrigerant to replace the indoor unit


Collection of refrigerant after replacing the indoor unit

- 1 Connect the gauge manifold to the gas and liquid stop valve.
- 2 Switch the power supply ON.
- 3 Enable pin 1 of DSW1 on the outdoor unit PCB for cooling operation. Close the liquid stop valve and collect the refrigerant.
- 4 Carry out the following procedures immediately when the side pressure drops and the gas stop valve indicates -0.01 MPa.

Prevent the pressure from dropping below -0.01 MPa. If the pressure is less, the compressor may be faulty.

- a. Close the gas stop valve.
- b. Disable pin 1 of DSW1.
- Switch off the power supply.



11.6 Cleaning agents for heat exchanger

The aluminium fin surfaces of the heat exchanger for all the indoor units of packaged air conditioners are coated with a hydrophilic coating to prevent the increase of airstream resistance due the occurrence of condensing water during cooling operation.

However, if the Aluminium fin's hydrophilic is decreased by the adhesion of contaminants, etc., the following phenomenon will happen.

Dew will adhere between each aluminium fin space (Bridging Phenomenon)

In some cases, dew may be splashed from the indoor unit

In order to avoid the malfunction of the unit, we recommend the use of cleaning agent for the aluminium fins.

11.6.1 Recommended specifications of cleaning agents for aluminium fins

Effect on hydrophilic coating	No effect		
	Grease and Oil	Specially effective	
Effectiveness against specific types of dirt	Tar	Effective	
types of ant	White powder (*1)	Ineffective	
Possibility of occurrence of crac	Low		
pH of the solution	Alkaline or Weak alkaline		
Requirement of dilution	Yes or No		
Personal Protection Equipment	Mask, Glasses, Gloves		

- (*1): The hydroxide caused by the reaction of aluminium fins and the water condensed on the surface of the fins.
- (*2): The possibility of occurrence of cracking was also examined taking into account the results of the examination of the possibility of occurrence of cracking in Acrylonitrile Butadiene Styrene (ABS) and Polystyrene (PS).
- (*3): Personal Protection Equipment (PPE) must be used whenever manipulating chemical products, in order to ensure safety.

11.6.2 Particularities and benefits

HITACHI has ben tested the effect of cleaning benefits using special fin cleaners for hydrophilic coated fins on the indoor units. Those tests were focused on the wettability, and confirmed as follows:

- Cleaning aluminium fins makes its hydrophilicity possible to recover.
- The hydrophilic coating is not damaged even if it's washed repeatedly by using special cleaning special agents for hydrophilic aluminium coatings.

11.6.3 To consider

Before washing aluminium fins, protect the fan motor, the electrical box, the connectors and, in general, all the wiring of being splashed with the cleaning products and water. In addition, before starting an air-conditioning operation, after washing the alumimnium fins, be sure that there is no splashing water on those items.

If the cleaning agents are used incorrectly, it will cause damage to aluminium fins. When using those products, pay special attention to the indications referred on each instructions manual

HITACHI

Johnson Controls-Hitachi Air Conditioning Spain, S.A.U. Ronda Shimizu, 1 - Polig. Ind. Can Torrella 08233 Vacarisses (Barcelona) Spain

HITACHI certifies that our products have met EU consumer safety, health and environmental requirements.

Johnson Controls-Hitachi Air Conditioning Spain, S.A.U. is certified with: ISO 9001 of AENOR, Spain for its Quality Management accordance with the standard

ISO 14001 of AENOR Spain for its Environmental Management systems accordance with the standard

HITACHI air conditioning products are manufactured according to: ISO 9001 of JQA, Japan for its Quality Management accordance with the standard

ISO 14001 of JACO, Japan for its Environmental Management accordance with the standard

HITACHI air conditioning products are manufactured according to: ISO 9001 of Malaysia, for its Quality Management accordance with the standard ISO 14001 of Malaysia, for its Environmental Management systems accordance with the standard

HITACHI participates in the Eurovent Certification Programme; the certified data of certified models are listed in the Eurovent Certification Online Directory (www.eurovent-certification.com).